圆周角的定理证明

时间:2024-06-14 02:02:28 作者:网友上传 字数:12291字

无忧范文网小编为你整理了多篇《圆周角的定理证明》范文,希望对您的工作学习有帮助,你还可以在无忧范文网可以找到更多《圆周角的定理证明》。

第一篇:圆周角教案

教学目标

知识目标

1、认识匀速圆周运动的概念.

2、理解线速度、角速度和周期的概念,掌握这几个物理量之间的关系并会进行计算.

能力目标

培养学生建立模型的能力及分析综合能力.

情感目标

激发学生学习兴趣,培养学生积极参与的意识.

教学建议

教材分析

教材首先明确要研究圆周运动中的最简单的情况,匀速圆周运动,接着从描述匀速圆周运动的快慢的角度引入线速度、角速度的概念及周期、频率、转速等概念,最后推导出线速度、角速度、周期间的关系,中间有一个思考与讨论做为铺垫.

教法建议

关于线速度、角速度、周期等概念的教学建议是:通过生活实例(齿轮转动或皮带传动装置)或多媒体资料,让学生切实感受到做圆周运动的物体有运动快慢与转动快慢及周期之别,有必要引入相关的物理量加以描述.学习线速度的概念,可以根据匀速圆周运动的概念(结合课件)引导学生认识弧长与时间比值保持不变的特点,进而引出线速度的大小与方向.同时应向学生指出线速度就是物体做匀速圆周运动的瞬时速度.学习角速度和周期的概念时,应向学生说明这两个概念是根据匀速圆周运动的特点和描述运动的需要而引入的.即物体做匀速圆周运动时,每通过一段弧长都与转过一定的圆心角相对应,因而物体沿圆周转动的快慢也可以用转过的圆心角与时间t比值来描述,由此引入角速度的概念.又根据匀速圆周运动具有周期性的特点,物体沿圆周转动的快慢还可以用转动一圈所用时间的长短来描述,为此引入了周期的概念.讲述角速度的概念时,不要求向学生强调角速度的矢量性.在讲述概念的同时,要让学生体会到匀速圆周运动的特点:线速度的大小、角速度、周期和频率保持不变的圆周运动.

关于“线速度、角速度和周期间的关系”的教学建议是:结合课件引导学生认识到这几个物理量在对圆周运动的描述上虽有所不同,但它们之间是有联系的',并引导学生从如下思路理解它们之间的关系:

教学设计方案

匀速圆周运动

教学重点:线速度、角速度、周期的概念

教学难点:各量之间的关系及其应用

主要设计:

一、描述匀速圆周运动的有关物理量.

(一)让学生举一些物体做圆周运动的实例.

(二)展示课件1、齿轮传动装置

课件2、皮带传动装置

为引入概念提供感性认识,引起思考和讨论

(三)展示课件3:质点做匀速圆周运动

可暂停.可读出运行的时间,对应的弧长,转过的圆心角,进而给出线速度、角速度、周期、频率、转速等概念.

二、线速度、角速度、周期间的关系:

(一)重新展示课件

1、齿轮传动装置.让学生体会到有些不同的点线速度大小相同,但角速度、周期不同,有些不同的点角速度、周期相同,但线速度大小不同;进而此导同学去分析它们之间的关系:

探究活动

观察与测量:请研究一下自行车飞轮与中轴轮盘通过链条的连接关系:测量一下各自的半径,并思考验证两轮的角速度关系,边缘点的线速度大小关系;有条件的话研究一下“变速自行车”的变速原理.

第二篇:圆周角教案

一、教材分析

本节内容选自人教版物理必修2第五章第4节。本节主要介绍了圆周运动的线速度和角速度的概念及两者的关系;学生前面已经学习了曲线运动,抛体运动以及平抛运动的规律,为本节课的学习做了很好的铺垫;而本节课作为对特殊曲线运动的进一步深入学习,也为以后继续学习向心力、向心加速度和生活中的圆周运动物理打下很好的基础,在教材中有着承上启下的作用;因此,学好本节课具有重要的意义。本节课是从运动学的角度来研究匀速圆周运动 ,围绕着如何描述匀速圆周运动的快慢展开,通过探究理清各个物理量的相互关系,并使学生能在具体的问题中加以应用。

(过渡句)知道了教材特点,我们再来了解一下学生特点。也就是我说课的第二部分:学情分析。

二、学情分析

学生虽然已经具备了较为完备的直线运动的知识和曲线运动的初步知识,并学会了用比值定义法描述匀速直线运动的快慢,尽管如此,但由于匀速圆周运动的特殊性和复杂性以及学生认知水平的差异,本节课的内容对学生来讲仍然是一个不小的台阶。

(过渡句)基于以上的教材特点和学生特点,我制定了如下的教学目标,力图把传授知识、渗透学习方法以及培养兴趣和能力有机的融合在一起,达到最好的教学效果。

三、教学目标

【知识与技能】

知道描述圆周运动快慢的两个物理量――线速度、角速度,会推导二者之间的关系。

【过程与方法】

通过对传动模型的应用,对线速度、角速度之间的关系有更加深入的了解,提高分析能力和抽象思维能力。

【情感态度与价值观】

在思考中体会物理学科严谨的逻辑关系,提高分析归纳能力,养成严谨科学的学习习惯。

(过渡句)基于这样的教学目标,要上好一堂课,还要明确分析教学的重难点。

四、教学重难点

【重点】

线速度、角速度的概念。

【难点】

1.二者关系的推导过程;

2. 对匀速圆周运动是变速运动的理解。

(过渡句)说完了教学重难点,下面我将着重谈谈本堂课的.教学过程。

五、教学过程

首先是导入环节:

在这个环节中,我将展示生活中的一些运动,如摩天轮、脱水桶等,引导学生找相似点:运动轨迹是一些圆,从而引出,这种轨迹为圆周的运动叫做圆周运动――引出课题。

接下来,我会顺势让学生再例举生活中的圆周运动,然后提出问题,直线运动我们用单位时间内的位移来描述物体的运动快慢,那么对于圆周运动又如何描述它们的运动快慢呢?

【意图:这个问题我采用类比的方式去提问,一方面让学生回顾前面学过的直线运动,另一方面让学生带着问题去思考二者的不同,有效的启发了学生的思维,很顺利的过渡到了接下来要讲的线速度和角速度。】

学习线速度的概念时,我会用flash配合实物电风扇的页片,让学生观察当用手缓慢拨动页片转动时,页片上分别标记的红、蓝两种与圆心距离不等的点的运动情况,哪个快那个慢。学生可以讨论发现相同的时间里,通过的弧长长的点运动得快。于是我们就可以用二者的比值来表示线速度的大小,而且我会引导学生去发现,当时间t足够小的时候,所对于的弧长也非常短,接近于圆弧上的一个点,因此线速度是瞬时速度,它的方向也就是在圆周各点的切线方向。另外还需让学生讨论交流“匀速圆周运动”中“匀速”的含义。

【意图:这是本堂课的一个难点,学生很容于将这里的匀速理解为速度不变。所以在这里我会再次强调速度的矢量性,它既有大小也有方向,这里的“匀速”其实是指“匀速率”,线速度大小不变,但是线速度的方向在时刻改变。】

接下来在学习角速度的概念时,应向学生说明这个概念是根据匀速圆周运动的特点和描述运动的需要而引入的,即物体做匀速圆周运动时,每通过一段弧长都与转过一定的圆心角相对应,因而物体沿圆周转动的快慢也可以用转过的圆心角与时间比值来描述,由此引入角速度的概念。但是在讲述角速度的概念时,不需要向学生强调角速度的矢量性。因为这个会在大学学习刚体力学的时候才学,需要用右手螺旋定则确定。

明确了两个概念之后,本堂课的一大重点就解决了,而依据教学目标,以及学生在学习过程和实际操作中暴露出的问题,如何去推导线速度、角速度之间的数学关系又是本堂课的又一难点。在这里我将带领学生去回顾数学中的表达式,然后让学生自己动手推导。

接下来在巩固提升环节,我将让学生观察自行车传动结构示意图中的大齿轮、小齿轮、后轮三个部分的转动,分析A、B、C三个点线速度、角速度的关系。

【意图:这是高中阶段比较典型额皮带传动问题,关键是要让学生明确两种情况下v和ω的关系:同轴、共线,在此基础上可以再提升难度:当三个轮子一起转的时候,又如何比较快慢,这样问题的设置层层深入,有梯度性,也符合学生的认知规律】

最后是小结作业环节,我将提出如下问题:除了线速度、角速度,还有一些可以用来描述快慢的物理量,如周期T、频率f,他们之间的关系又如何?可以让学生自己尝试推导这些物理量之间的关系。

第三篇:圆周角

第一课时 (一)

教学目标

(1)理解的概念,掌握的两个特征、定理的内容及简单应用;

(2)继续培养学生观察、分析、想象、归纳和逻辑推理的能力;

(3)渗透由“特殊到一般”,由“一般到特殊”的数学思想方法.

教学重点:的概念和定理

教学难点:定理的证明中由“一般到特殊”的数学思想方法和完全归纳法的数学思想.

教学活动设计:(在教师指导下完成)

(一)的概念

1、复习提问:

(1)什么是圆心角?

答:顶点在圆心的角叫圆心角.

(2)圆心角的度数定理是什么?

答:圆心角的度数等于它所对弧的度数.(如右图)

2、引题:

如果顶点不在圆心而在圆上,则得到如左图的新的角∠ACB,它就是.(如右图)(演示图形,提出的定义)

定义:顶点在圆周上,并且两边都和圆相交的角叫做

3、概念辨析:

教材P93中1题:判断下列各图形中的是不是,并说明理由.

学生归纳:一个角是的条件:①顶点在圆上;②两边都和圆相交.

(二)的定理

1、提出的度数问题

问题:的度数与什么有关系?

经过电脑演示图形,让学生观察图形、分析与圆心角,猜想它们有无关系.引导学生在建立关系时注意弧所对的的三种情况:圆心在的一边上、圆心在内部、圆心在外部.

(在教师引导下完成)

(1)当圆心在的一边上时,与相应的圆心角的关系:(演示图形)观察得知圆心在上时,是圆心角的一半.

提出必须用严格的数学方法去证明.

证明:(圆心在上)

(2)其它情况,与相应圆心角的关系:

当圆心在外部时(或在内部时)引导学生作辅助线将问题转化成圆心在一边上的情况,从而运用前面的结论,得出这时仍然等于相应的圆心角的结论.

证明:作出过C的直径(略)

定理: 一条弧所对的

周角等于它所对圆心角的一半.

说明:这个定理的证明我们分成三种情况.这体现了数学中的分类方法;在证明中,后两种都化成了第一种情况,这体现数学中的化归思想.(对A层学生渗透完全归纳法)

(三)定理的应用

1、例题: 如图 OA、OB、OC都是圆O的半径, ∠AOB=2∠BOC.

求证:∠ACB=2∠BAC

让学生自主分析、解得,教师规范推理过程.

说明:①推理要严密;②符号应用要严格,教师要讲清.

2、巩固练习:

(1)如图,已知圆心角∠AOB=100°,求∠ACB、∠ADB的度数?

(2)一条弦分圆为1:4两部分,求这弦所对的的度数?

说明:一条弧所对的有无数多个,却这条弧所对的的度数只有一个,但一条弦所对的的度数只有两个.

(四)总结

知识:(1)定义及其两个特征;(2)定理的内容.

思想方法:一种方法和一种思想:

在证明中,运用了数学中的分类方法和“化归”思想.分类时应作到不重不漏;化归思想是将复杂的问题转化成一系列的简单问题或已证问题.

(五)作业 教材P100中 习题A组6,7,8

第二、三课时 (二、三)

教学目标

(1)掌握定理的三个推论,并会熟练运用这些知识进行有关的计算和证明;

(2)进一步培养学生观察、分析及解决问题的能力及逻辑推理能力;

(3)培养添加辅助线的能力和思维的广阔性.

教学重点:定理的三个推论的应用.

教学难点:三个推论的灵活应用以及辅助线的添加.

教学活动设计:

(一)创设学习情境

问题1画一个圆,以B、C为弧的端点能画多少个?它们有什么关系?

问题2在⊙O中,若 =,能否得到∠C=∠G呢?根据什么?反过来,若土∠C=∠G ,是否得到 =呢?

(二)分析、研究、交流、归纳

让学生分析、研究,并充分交流.

注意:①问题解决,只要构造圆心角进行过渡即可;②若 =,则∠C=∠G;但反之不成立.

老师组织学生归纳:

推论1:同弧或等弧所对的相等;在同圆或等圆中,相等的所对的弧也相等.

重视:同弧说明是“同一个圆”; 等弧说明是“在同圆或等圆中”.

问题: “同弧”能否改成“同弦”呢?同弦所对的一定相等吗?(学生通过交流获得知识)

问题3(1)一个特殊的圆弧――半圆,它所对的是什么样的角?

(2)如果一条弧所对的是90°,那么这条弧所对的圆心角是什么样的角?

学生通过以上两个问题的解决,在教师引导下得推论2:

推论2半圆(或直径)所对的是直角;90°的所对的弦直径.

指出:这个推论是圆中一个很重要的性质,为在圆中确定直角、成垂直关系创造了条件,要熟练掌握.

启发学生根据推论2推出推论3:

推论3:如果三角形一边上的中线等于这边的一半,那么这个三角是直角三角形.

指出:推论3是下面定理的逆定理:在直角三角形中,斜边上的中线等于斜边的一半.

(三)应用、反思

例1、如图,AD是△ABC的高,AE是△ABC的外接圆直径.

求证:AB・AC=AE・AD.

对A层同学,让学生自主地分析问题、解决问题,进行生生交流,师生交流;其他层次的学生在教师引导下完成.

交流:①分析解题思路;②作辅助线的方法;③解题推理过程(要规范).

解(略)

教师引导学生思考:(1)此题还有其它证法吗? (2)比较以上证法的优缺点.

指出:在解圆的有关问题时,常常需要添加辅助线,构成直径上的,以便利用直径上的是直角的性质.

变式练习1:如图,△ABC内接于⊙O,∠1=∠2.

求证:AB・AC=AE・AD.

变式练习2:如图,已知△ABC内接于⊙O,弦AE平分

∠BAC交BC于D.

求证:AB・AC=AE・AD.

指出:这组题目比较典型,圆和相似三角形有密切联系,证明圆中某些线段成比例,常常需要找出或通过辅助线构造出相似三角形.

例2:如图,已知在⊙O中,直径AB为10厘米,弦AC为6厘米,∠ACB的平分线交⊙O于D;

求BC,AD和BD的长.

解:(略)

说明:充分利用直径所对的为直角,解直角三角形.

练习:教材P96中1、2

(四)小结(指导学生共同小结)

知识:本节课主要学习了定理的三个推论.这三个推论各具特色,作用各异,在今后的学习中应用十分广泛,应熟练掌握.

能力:在解圆的有关问题时,常常需要添加辅助线,构成直径所对的或构成相似三角形,这种基本技能技巧一定要掌握.

(五)作业

教材P100.习题A组9、10、12、13、14题;另外A层同学做P102B组3,4题.

探究活动

我们已经学习了“的度数等于它所对的弧的度数的一半”,但当角的顶点在圆外(如图①称圆外角)或在圆内(如图②称圆内角),它的度数又和什么有关呢?请探究.

提示:(1)连结BC,可得∠E=( 的度数― 的度数)

(2)延长AE、CE分别交圆于B、D,则∠B=的度数,

∠C=的度数,

∴∠AEC=∠B+∠C=( 的度数+ 的度数).

第四篇:圆周角

第一课时 (一)

教学目标

(1)理解的概念,掌握的两个特征、定理的内容及简单应用;

(2)继续培养学生观察、分析、想象、归纳和逻辑推理的能力;

(3)渗透由“特殊到一般”,由“一般到特殊”的数学思想方法.

教学重点:的概念和定理

教学难点:定理的证明中由“一般到特殊”的数学思想方法和完全归纳法的数学思想.

教学活动设计:(在教师指导下完成)

(一)的概念

1、复习提问:

(1)什么是圆心角?

答:顶点在圆心的角叫圆心角.

(2)圆心角的度数定理是什么?

答:圆心角的度数等于它所对弧的度数.(如右图)

2、引题:

如果顶点不在圆心而在圆上,则得到如左图的新的角∠ACB,它就是.(如右图)(演示图形,提出的定义)

定义:顶点在圆周上,并且两边都和圆相交的角叫做

3、概念辨析:

教材P93中1题:判断下列各图形中的是不是,并说明理由.

学生归纳:一个角是的条件:①顶点在圆上;②两边都和圆相交.

(二)的定理

1、提出的度数问题

问题:的度数与什么有关系?

经过电脑演示图形,让学生观察图形、分析与圆心角,猜想它们有无关系.引导学生在建立关系时注意弧所对的的三种情况:圆心在的一边上、圆心在内部、圆心在外部.

(在教师引导下完成)

(1)当圆心在的一边上时,与相应的圆心角的关系:(演示图形)观察得知圆心在上时,是圆心角的一半.

提出必须用严格的数学方法去证明.

证明:(圆心在上)

(2)其它情况,与相应圆心角的关系:

当圆心在外部时(或在内部时)引导学生作辅助线将问题转化成圆心在一边上的情况,从而运用前面的结论,得出这时仍然等于相应的圆心角的结论.

证明:作出过C的直径(略)

定理: 一条弧所对的

周角等于它所对圆心角的一半.

说明:这个定理的证明我们分成三种情况.这体现了数学中的分类方法;在证明中,后两种都化成了第一种情况,这体现数学中的化归思想.(对A层学生渗透完全归纳法)

(三)定理的应用

1、例题: 如图 OA、OB、OC都是圆O的半径, ∠AOB=2∠BOC.

求证:∠ACB=2∠BAC

让学生自主分析、解得,教师规范推理过程.

说明:①推理要严密;②符号应用要严格,教师要讲清.

2、巩固练习:

(1)如图,已知圆心角∠AOB=100°,求∠ACB、∠ADB的度数?

(2)一条弦分圆为1:4两部分,求这弦所对的的度数?

说明:一条弧所对的有无数多个,却这条弧所对的的度数只有一个,但一条弦所对的的度数只有两个.

(四)总结

知识:(1)定义及其两个特征;(2)定理的内容.

思想方法:一种方法和一种思想:

在证明中,运用了数学中的分类方法和“化归”思想.分类时应作到不重不漏;化归思想是将复杂的问题转化成一系列的简单问题或已证问题.

(五)作业 教材P100中 习题A组6,7,8

第二、三课时 (二、三)

教学目标

(1)掌握定理的三个推论,并会熟练运用这些知识进行有关的计算和证明;

(2)进一步培养学生观察、分析及解决问题的能力及逻辑推理能力;

(3)培养添加辅助线的能力和思维的广阔性.

教学重点:定理的三个推论的应用.

教学难点:三个推论的灵活应用以及辅助线的添加.

教学活动设计:

(一)创设学习情境

问题1画一个圆,以B、C为弧的端点能画多少个?它们有什么关系?

问题2在⊙O中,若 = ,能否得到∠C=∠G呢?根据什么?反过来,若土∠C=∠G ,是否得到 = 呢?

(二)分析、研究、交流、归纳

让学生分析、研究,并充分交流.

注意:①问题解决,只要构造圆心角进行过渡即可;②若 = ,则∠C=∠G;但反之不成立.

老师组织学生归纳:

推论1:同弧或等弧所对的相等;在同圆或等圆中,相等的所对的弧也相等.

重视:同弧说明是“同一个圆”; 等弧说明是“在同圆或等圆中”.

问题: “同弧”能否改成“同弦”呢?同弦所对的一定相等吗?(学生通过交流获得知识)

问题3(1)一个特殊的圆弧――半圆,它所对的是什么样的角?

(2)如果一条弧所对的是90°,那么这条弧所对的圆心角是什么样的角?

学生通过以上两个问题的解决,在教师引导下得推论2:

推论2半圆(或直径)所对的是直角;90°的所对的弦直径.

指出:这个推论是圆中一个很重要的性质,为在圆中确定直角、成垂直关系创造了条件,要熟练掌握.

启发学生根据推论2推出推论3:

推论3:如果三角形一边上的中线等于这边的一半,那么这个三角是直角三角形.

指出:推论3是下面定理的逆定理:在直角三角形中,斜边上的中线等于斜边的一半.

(三)应用、反思

例1、如图,AD是△ABC的高,AE是△ABC的外接圆直径.

求证:AB・AC=AE・AD.

对A层同学,让学生自主地分析问题、解决问题,进行生生交流,师生交流;其他层次的学生在教师引导下完成.

交流:①分析解题思路;②作辅助线的方法;③解题推理过程(要规范).

解(略)

教师引导学生思考:(1)此题还有其它证法吗? (2)比较以上证法的优缺点.

指出:在解圆的有关问题时,常常需要添加辅助线,构成直径上的,以便利用直径上的是直角的性质.

变式练习1:如图,△ABC内接于⊙O,∠1=∠2.

求证:AB・AC=AE・AD.

变式练习2:如图,已知△ABC内接于⊙O,弦AE平分

∠BAC交BC于D.

求证:AB・AC=AE・AD.

指出:这组题目比较典型,圆和相似三角形有密切联系,证明圆中某些线段成比例,常常需要找出或通过辅助线构造出相似三角形.

例2:如图,已知在⊙O中,直径AB为10厘米,弦AC为6厘米,∠ACB的平分线交⊙O于D;

求BC,AD和BD的长.

解:(略)

说明:充分利用直径所对的为直角,解直角三角形.

练习:教材P96中1、2

(四)小结(指导学生共同小结)

知识:本节课主要学习了定理的三个推论.这三个推论各具特色,作用各异,在今后的学习中应用十分广泛,应熟练掌握.

能力:在解圆的有关问题时,常常需要添加辅助线,构成直径所对的或构成相似三角形,这种基本技能技巧一定要掌握.

(五)作业

教材P100.习题A组9、10、12、13、14题;另外A层同学做P102B组3,4题.

探究活动

我们已经学习了“的度数等于它所对的弧的度数的一半”,但当角的顶点在圆外(如图①称圆外角)或在圆内(如图②称圆内角),它的度数又和什么有关呢?请探究.

提示:(1)连结BC,可得∠E= ( 的度数― 的度数)

(2)延长AE、CE分别交圆于B、D,则∠B= 的度数,

∠C= 的度数,

∴∠AEC=∠B+∠C= ( 的度数+ 的度数).

第五篇:圆周角

第一课时 圆周角(一)

教学目标

(1)理解圆周角的概念,掌握圆周角的两个特征、定理的内容及简单应用;

(2)继续培养学生观察、分析、想象、归纳和逻辑推理的能力;

(3)渗透由“特殊到一般”,由“一般到特殊”的数学思想方法.

教学重点:圆周角的概念和圆周角定理

教学难点:圆周角定理的证明中由“一般到特殊”的数学思想方法和完全归纳法的数学思想.

教学活动设计:(在教师指导下完成)

(一)圆周角的概念

1、复习提问:

(1)什么是圆心角?

答:顶点在圆心的角叫圆心角.

(2)圆心角的度数定理是什么?

答:圆心角的度数等于它所对弧的度数.(如右图)

2、引题圆周角:

如果顶点不在圆心而在圆上,则得到如左图的新的角∠ACB,它就是圆周角.(如右图)(演示图形,提出圆周角的定义)

定义:顶点在圆周上,并且两边都和圆相交的角叫做圆周角

3、概念辨析:

教材P93中1题:判断下列各图形中的是不是圆周角,并说明理由.

学生归纳:一个角是圆周角的条件:①顶点在圆上;②两边都和圆相交.

(二)圆周角的定理

1、提出圆周角的度数问题

问题:圆周角的度数与什么有关系?

经过电脑演示图形,让学生观察图形、分析圆周角与圆心角,猜想它们有无关系.引导学生在建立关系时注意弧所对的圆周角的三种情况:圆心在圆周角的一边上、圆心在圆周角内部、圆心在圆周角外部.

(在教师引导下完成)

(1)当圆心在圆周角的一边上时,圆周角与相应的圆心角的关系:(演示图形)观察得知圆心在圆周角上时,圆周角是圆心角的一半.

提出必须用严格的数学方法去证明.

证明:(圆心在圆周角上)

(2)其它情况,圆周角与相应圆心角的关系:

当圆心在圆周角外部时(或在圆周角内部时)引导学生作辅助线将问题转化成圆心在圆周角一边上的情况,从而运用前面的结论,得出这时圆周角仍然等于相应的圆心角的结论.

证明:作出过C的直径(略)

圆周角定理: 一条弧所对的

周角等于它所对圆心角的一半.

说明:这个定理的证明我们分成三种情况.这体现了数学中的分类方法;在证明中,后两种都化成了第一种情况,这体现数学中的化归思想.(对A层学生渗透完全归纳法)

(三)定理的应用

1、例题: 如图 OA、OB、OC都是圆O的半径, ∠AOB=2∠BOC.

求证:∠ACB=2∠BAC

让学生自主分析、解得,教师规范推理过程.

说明:①推理要严密;②符号应用要严格,教师要讲清.

2、巩固练习:

(1)如图,已知圆心角∠AOB=100°,求圆周角∠ACB、∠ADB的度数?

(2)一条弦分圆为1:4两部分,求这弦所对的圆周角的度数?

说明:一条弧所对的圆周角有无数多个,却这条弧所对的圆周角的度数只有一个,但一条弦所对的圆周角的度数只有两个.

(四)总结

知识:(1)圆周角定义及其两个特征;(2)圆周角定理的内容.

思想方法:一种方法和一种思想:

在证明中,运用了数学中的分类方法和“化归”思想.分类时应作到不重不漏;化归思想是将复杂的问题转化成一系列的简单问题或已证问题.

(五)作业 教材P100中 习题A组6,7,8

第二、三课时 圆周角(二、三)

教学目标

(1)掌握圆周角定理的三个推论,并会熟练运用这些知识进行有关的计算和证明;

(2)进一步培养学生观察、分析及解决问题的能力及逻辑推理能力;

(3)培养添加辅助线的能力和思维的广阔性.

教学重点:圆周角定理的三个推论的应用.

教学难点:三个推论的灵活应用以及辅助线的添加.

教学活动设计:

(一)创设学习情境

问题1画一个圆,以B、C为弧的端点能画多少个圆周角?它们有什么关系?

问题2在⊙O中,若 =,能否得到∠C=∠G呢?根据什么?反过来,若土∠C=∠G ,是否得到 =呢?

(二)分析、研究、交流、归纳

让学生分析、研究,并充分交流.

注意:①问题解决,只要构造圆心角进行过渡即可;②若 =,则∠C=∠G;但反之不成立.

老师组织学生归纳:

推论1:同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等.

重视:同弧说明是“同一个圆”; 等弧说明是“在同圆或等圆中”.

问题: “同弧”能否改成“同弦”呢?同弦所对的圆周角一定相等吗?(学生通过交流获得知识)

问题3(1)一个特殊的圆弧――半圆,它所对的圆周角是什么样的角?

(2)如果一条弧所对的圆周角是90°,那么这条弧所对的圆心角是什么样的角?

学生通过以上两个问题的解决,在教师引导下得推论2:

推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦直径.

指出:这个推论是圆中一个很重要的性质,为在圆中确定直角、成垂直关系创造了条件,要熟练掌握.

启发学生根据推论2推出推论3:

推论3:如果三角形一边上的中线等于这边的一半,那么这个三角是直角三角形.

指出:推论3是下面定理的逆定理:在直角三角形中,斜边上的中线等于斜边的一半.

(三)应用、反思

例1、如图,AD是△ABC的高,AE是△ABC的外接圆直径.

求证:AB·AC=AE·AD.

对A层同学,让学生自主地分析问题、解决问题,进行生生交流,师生交流;其他层次的学生在教师引导下完成.

交流:①分析解题思路;②作辅助线的方法;③解题推理过程(要规范).

解(略)

教师引导学生思考:(1)此题还有其它证法吗? (2)比较以上证法的优缺点.

指出:在解圆的有关问题时,常常需要添加辅助线,构成直径上的圆周角,以便利用直径上的圆周角是直角的性质.

变式练习1:如图,△ABC内接于⊙O,∠1=∠2.

求证:AB·AC=AE·AD.

变式练习2:如图,已知△ABC内接于⊙O,弦AE平分

∠BAC交BC于D.

求证:AB·AC=AE·AD.

指出:这组题目比较典型,圆和相似三角形有密切联系,证明圆中某些线段成比例,常常需要找出或通过辅助线构造出相似三角形.

例2:如图,已知在⊙O中,直径AB为10厘米,弦AC为6厘米,∠ACB的平分线交⊙O于D;

求BC,AD和BD的长.

解:(略)

说明:充分利用直径所对的圆周角为直角,解直角三角形.

练习:教材P96中1、2

(四)小结(指导学生共同小结)

知识:本节课主要学习了圆周角定理的三个推论.这三个推论各具特色,作用各异,在今后的学习中应用十分广泛,应熟练掌握.

能力:在解圆的有关问题时,常常需要添加辅助线,构成直径所对的圆周角或构成相似三角形,这种基本技能技巧一定要掌握.

(五)作业

教材P100.习题A组9、10、12、13、14题;另外A层同学做P102B组3,4题.

探究活动

我们已经学习了“圆周角的度数等于它所对的弧的度数的一半”,但当角的顶点在圆外(如图①称圆外角)或在圆内(如图②称圆内角),它的度数又和什么有关呢?请探究.

提示:(1)连结BC,可得∠E=( 的度数― 的度数)

(2)延长AE、CE分别交圆于B、D,则∠B=的度数,

∠C=的度数,

∴∠AEC=∠B+∠C=( 的度数+ 的度数).

第六篇:圆周角

第一课时 圆周角(一)

教学目标:

(1)理解圆周角的概念,把握圆周角的两个特征、定理的内容及简单应用;

(2)继续培养学生观察、分析、想象、归纳和逻辑推理的能力;

(3)渗透由“非凡到一般”,由“一般到非凡”的数学思想方法.

教学重点:圆周角的概念和圆周角定理

教学难点:圆周角定理的证实中由“一般到非凡”的数学思想方法和完全归纳法的数学思想.

教学活动设计:(在教师指导下完成)

(一)圆周角的概念

1、复习提问:

(1)什么是圆心角?

答:顶点在圆心的角叫圆心角.

(2)圆心角的度数定理是什么?

答:圆心角的度数等于它所对弧的度数.(如右图)

2、引题圆周角:

假如顶点不在圆心而在圆上,则得到如左图的新的角∠acb,它就是圆周角.(如右图)(演示图形,提出圆周角的定义)

定义:顶点在圆周上,并且两边都和圆相交的角叫做圆周角

3、概念辨析:

教材p93中1题:判定下列各图形中的是不是圆周角,并说明理由.

学生归纳:一个角是圆周角的条件:①顶点在圆上;②两边都和圆相交.

(二)圆周角的定理

1、提出圆周角的度数问题

问题:圆周角的度数与什么有关系?

经过电脑演示图形,让学生观察图形、分析圆周角与圆心角,猜想它们有无关系.引导学生在建立关系时注重弧所对的圆周角的三种情况:圆心在圆周角的一边上、圆心在圆周角内部、圆心在圆周角外部.

(在教师引导下完成)

(1)当圆心在圆周角的一边上时,圆周角与相应的圆心角的关系:(演示图形)观察得知圆心在圆周角上时,圆周角是圆心角的一半.

提出必须用严格的数学方法去证实.

证实:(圆心在圆周角上)

(2)其它情况,圆周角与相应圆心角的关系:

当圆心在圆周角外部时(或在圆周角内部时)引导学生作辅助线将问题转化成圆心在圆周角一边上的情况,从而运用前面的结论,得出这时圆周角仍然等于相应的圆心角的结论.

证实:作出过c的直径(略)

圆周角定理: 一条弧所对的

周角等于它所对圆心角的一半.

说明:这个定理的证实我们分成三种情况.这体现了数学中的分类方法;在证实中,后两种都化成了第一种情况,这体现数学中的化归思想.(对a层学生渗透完全归纳法)

(三)定理的应用

1、例题: 如图 oa、ob、oc都是圆o的半径, ∠aob=2∠boc.

求证:∠acb=2∠bac

让学生自主分析、解得,教师规范推理过程.

说明:①推理要严密;②符号应用要严格,教师要讲清.

2、巩固练习:

(1)如图,已知圆心角∠aob=100°,求圆周角∠acb、∠adb的度数?

(2)一条弦分圆为1:4两部分,求这弦所对的圆周角的度数?

说明:一条弧所对的圆周角有无数多个,却这条弧所对的圆周角的度数只有一个,但一条弦所对的圆周角的度数只有两个.

(四)总结

知识:(1)圆周角定义及其两个特征;(2)圆周角定理的内容.

思想方法:一种方法和一种思想:

在证实中,运用了数学中的分类方法和“化归”思想.分类时应作到不重不漏;化归思想是将复杂的问题转化成一系列的简单问题或已证问题.

(五)作业 教材p100中 习题a组6,7,8

第二、三课时 圆周角(二、三)

教学目标:

(1)把握圆周角定理的三个推论,并会熟练运用这些知识进行有关的计算和证实;

(2)进一步培养学生观察、分析及解决问题的能力及逻辑推理能力;

(3)培养添加辅助线的能力和思维的广阔性.

教学重点:圆周角定理的三个推论的应用.

教学难点:三个推论的灵活应用以及辅助线的添加.

教学活动设计:

(一)创设学习情境

问题1:画一个圆,以b、c为弧的端点能画多少个圆周角?它们有什么关系?

问题2:在⊙o中,若 = ,能否得到∠c=∠g呢?根据什么?反过来,若土∠c=∠g ,是否得到 = 呢?

(二)分析、研究、交流、归纳

让学生分析、研究,并充分交流.

注重:①问题解决,只要构造圆心角进行过渡即可;②若 = ,则∠c=∠g;但反之不成立.

老师组织学生归纳:

推论1:同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等.

重视:同弧说明是“同一个圆”; 等弧说明是“在同圆或等圆中”.

问题: “同弧”能否改成“同弦”呢?同弦所对的圆周角一定相等吗?(学生通过交流获得知识)

问题3:(1)一个非凡的圆弧――半圆,它所对的圆周角是什么样的角?

(2)假如一条弧所对的圆周角是90°,那么这条弧所对的圆心角是什么样的角?

学生通过以上两个问题的解决,在教师引导下得推论2:

推论2: 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦直径.

指出:这个推论是圆中一个很重要的性质,为在圆中确定直角、成垂直关系创造了条件,要熟练把握.

启发学生根据推论2推出推论3:

推论3:假如三角形一边上的中线等于这边的一半,那么这个三角是直角三角形.

指出:推论3是下面定理的逆定理:在直角三角形中,斜边上的中线等于斜边的一半.

(三)应用、反思

例1、如图,ad是△abc的高,ae是△abc的外接圆直径.

求证:ab・ac=ae・ad.

对a层同学,让学生自主地分析问题、解决问题,进行生生交流,师生交流;其他层次的学生在教师引导下完成.

交流:①分析解题思路;②作辅助线的方法;③解题推理过程(要规范).

解(略)

教师引导学生思考:(1)此题还有其它证法吗? (2)比较以上证法的优缺点.

指出:在解圆的有关问题时,经常需要添加辅助线,构成直径上的圆周角,以便利用直径上的圆周角是直角的性质.

变式练习1:如图,△abc内接于⊙o,∠1=∠2.

求证:ab・ac=ae・ad.

变式练习2:如图,已知△abc内接于⊙o,弦ae平分

∠bac交bc于d.

求证:ab・ac=ae・ad.

指出:这组题目比较典型,圆和相似三角形有密切联系,证实圆中某些线段成比例,经常需要找出或通过辅助线构造出相似三角形.

例2:如图,已知在⊙o中,直径ab为10厘米,弦ac为6厘米,∠acb的平分线交⊙o于d;

求bc,ad和bd的长.

解:(略)

说明:充分利用直径所对的圆周角为直角,解直角三角形.

练习:教材p96中1、2

(四)小结(指导学生共同小结)

知识:本节课主要学习了圆周角定理的三个推论.这三个推论各具特色,作用各异,在今后的学习中应用十分广泛,应熟练把握.

能力:在解圆的有关问题时,经常需要添加辅助线,构成直径所对的圆周角或构成相似三角形,这种基本技能技巧一定要把握.

(五)作业

教材p100.习题a组9、10、12、13、14题;另外a层同学做p102b组3,4题.

探究活动

我们已经学习了“圆周角的度数等于它所对的弧的度数的一半”,但当角的顶点在圆外(如图①称圆外角)或在圆内(如图②称圆内角),它的度数又和什么有关呢?请探究.

提示:(1)连结bc,可得∠e= ( 的度数― 的度数)

(2)延长ae、ce分别交圆于b、d,则∠b= 的度数,

∠c= 的度数,

∴∠aec=∠b ∠c= ( 的度数 的度数).

《圆周角的定理证明.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档