圆周角定理的证明思想

时间:2024-06-14 01:33:29 作者:网友上传 字数:2548字

无忧范文网小编为你整理了多篇《圆周角定理的证明思想》范文,希望对您的工作学习有帮助,你还可以在无忧范文网可以找到更多《圆周角定理的证明思想》。

第一篇:圆周角

教学目标: 1、通过本节课的教学使学生能够系统地、掌握圆周角这大节的知识点.并能运用它准确地判断真假命题.2、熟练地掌握圆周角定理及三个推论,并能运用它们准确地证明和计算.3、结合本节课的教学培养学生准确地计算问题的能力;4、进一步培养学生观察、分析、归纳及逻辑思维能力.教学重点: 圆周角定理及推论的应用.教学难点:理解圆周角定理及推论及辅助线的添加.教学过程:一、新课引入:本节课是圆周角的第三课时,是引导学生在掌握圆周角定义、圆周角定理及三个推论的基础上,进行的一节综合习题课.二、新课讲解:由于是一节综合习题课,教学一开始由学生总结本大节知识点,教师板书知识网络图,给学生一个完整的知识结构,便于学生进一步理解和掌握.提问:(1)什么叫圆周角?圆周角有哪些性质?教师提出问题,学生回答问题,教师板书出知识网络图:(2)出示一组练习题(幻灯上).通过这组选择题巩固本节课所要用到的知识点,通过师生评价,使知识掌握更准确.1、选择题:①、下列命题,是真命题的是 [ ]a.相等的圆周角所对的弧相等b.圆周角的度数等于圆心角度数的一半c.90°的圆周角所对的弦是直径d.长度相等的弧所对的圆周角相等②下列命题中,假命题的个数 [ ](1)、顶点在圆上的角是圆周角(2)、等弧所对的圆周角相等(3)、同弦所对的圆周角相等(4)、平分弦的直径垂直于弦a.1. b.2. c.3. d.4.为了遵循素质教育的学生主体性、层次性的原则,题目的设计和选择要根据学生的实际情况,做到因材施教.教师在提问学生回答问题中分三个层次进行,使得不同层次的学生有所得.这组选择题是比较容易出错的概念问题,教师为了真正使学生理解和准确地应用,教师有意利用电脑画面演示,从生动而直观再现命题的正、反例子,把知识学习寓于趣味教学之中,大大激发学生的兴趣,从而加深对知识的深化.接下来和学生一起来分析例3.例3 如图7-43,已知在⊙o中,直径ab为10cm,弦ac为6cm,∠acb的平分线交⊙o于d,求bc,ad和bd的长.

分析,所要求的三线段bc,ad和bd的长,能否把这三条线段转化为是直角三角形的直角边问题,由于已知ab为⊙o的直径,可以得到△abc和△adb都是直角三角形,又因为cd平分∠acb,所以可得 = ,可以得到弦ad=db,这时由勾股定理可得到三条线段bc、ad、db的长.学生回答解题过程,教师板书:解:∵ab为直径,∴∠acb=∠adb=90°.在rt△abc中,∵cd平分∠acb,∴ = .在等腰直角三角形adb中,接下来练习:练习1:教材p.96中1题.如图7-44,ab为⊙o的直径,弦ac=3cm,bc=4cm,cd⊥ab,垂足为d.求ad、bd和cd的长.

分析第一种方法时,主要由学生自己完成.分析1:要求ad、bd、cd的长,①ab的长,由于ab为⊙o的直径,所以可得到△abc是直角三角形,即可用勾股定理求出.②求cd的长,因cd是rt△abc斜边ab上的高,所以可以根据三角形面积公式,得到cd×ab=ac・cb来解决.④求db的长,用线段之间关系即可求出.方法二由教师分析解题过程:分析2:①求ab的长.(勾股定理)(cm).③求bd的长,可用相似三角形也可以用线段之间关系解决.这道练习题的目的,教师引导学生对一些问题思维要开朗,不能只局限于一种,要善于引导学生发散性思维,一题多解.练习2:教材p.96中2题.

已知:cd是△abc的中线,ab=2cd,∠b=60°.求证:△abc外接圆的半径等于cb.学生分析证明思路,教师适当点拨.证明过程由学生写在黑板上:证明:(法一)△abc外接圆的半径等于cb.法二:略.三、课堂小结:师生共同从知识、技能、方法等方面进行小结.1、知识方面:

2、技能方面:根据题意要会画图形,构造出直径上的圆周角,同弧所对的圆周角等.3、方法方面:①数形结合.②一题多解.四、布置作业教材p.101中14题;p.102中3、4题.

第二篇:圆周角

教学目标:

(1)掌握圆周角定理的三个推论,并会熟练运用这些知识进行有关的计算和证明;

(2)进一步培养学生观察、分析及解决问题的能力及逻辑推理能力;

(3)培养添加辅助线的能力和思维的广阔性.

教学重点:

圆周角定理的三个推论的应用.

教学难点:

三个推论的灵活应用以及辅助线的添加.

教学活动设计:

(一)创设学习情境

问题1:画一个圆,以B、C为弧的端点能画多少个圆周角?它们有什么关系?

问题2:在⊙O中,若=,能否得到∠C=∠G呢?根据什么?反过来,若土∠C=∠G,是否得到=呢?

(二)分析、研究、交流、归纳

让学生分析、研究,并充分交流.

注意:①问题解决,只要构造圆心角进行过渡即可;②若=,则∠C=∠G;但反之不成立.

老师组织学生归纳:

推论1:同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧也相等.

重视:同弧说明是“同一个圆”;等弧说明是“在同圆或等圆中”.

问题:“同弧”能否改成“同弦”呢?同弦所对的圆周角一定相等吗?(学生通过交流获得知识)

问题3:(1)一个特殊的圆弧――半圆,它所对的圆周角是什么样的角?

(2)如果一条弧所对的圆周角是90°,那么这条弧所对的圆心角是什么样的角?

学生通过以上两个问题的解决,在教师引导下得推论2:

推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦直径.

指出:这个推论是圆中一个很重要的性质,为在圆中确定直角、成垂直关系创造了条件,要熟练掌握.

启发学生根据推论2推出推论3:

推论3:如果三角形一边上的中线等于这边的一半,那么这个三角是直角三角形.

指出:推论3是下面定理的逆定理:在直角三角形中,斜边上的中线等于斜边的一半.

(三)应用、反思

例1、如图,AD是△ABC的高,AE是△ABC的外接圆直径.

求证:AB・AC=AE・AD.

对A层同学,让学生自主地分析问题、解决问题,进行生生交流,师生交流;其他层次的学生在教师引导下完成.

交流:①分析解题思路;②作辅助线的方法;③解题推理过程(要规范).

解(略)

教师引导学生思考:(1)此题还有其它证法吗?(2)比较以上证法的优缺点.

指出:在解圆的有关问题时,常常需要添加辅助线,构成直径上的圆周角,以便利用直径上的圆周角是直角的性质.

变式练习1:如图,△ABC内接于⊙O,∠1=∠2.

求证:AB・AC=AE・AD.

变式练习2:如图,已知△ABC内接于⊙O,弦AE平分

∠BAC交BC于D.

求证:AB・AC=AE・AD.

指出:这组题目比较典型,圆和相似三角形有密切联系,证明圆中某些线段成比例,常常需要找出或通过辅助线构造出相似三角形.

例2:如图,已知在⊙O中,直径AB为10厘米,弦AC为6厘米,∠ACB的平分线交⊙O于D;

求BC,AD和BD的长.

解:(略)

说明:充分利用直径所对的圆周角为直角,解直角三角形.

练习:教材P96中1、2

(四)小结(指导学生共同小结)

知识:本节课主要学习了圆周角定理的三个推论.这三个推论各具特色,作用各异,在今后的学习中应用十分广泛,应熟练掌握.

能力:在解圆的有关问题时,常常需要添加辅助线,构成直径所对的圆周角或构成相似三角形,这种基本技能技巧一定要掌握.

(五)作业

教材P100.习题A组9、10、12、13、14题;另外A层同学做P102B组3,4题.

探究活动

我们已经学习了“圆周角的度数等于它所对的弧的度数的一半”,但当角的顶点在圆外(如图①称圆外角)或在圆内(如图②称圆内角),它的度数又和什么有关呢?请探究.

提示:(1)连结BC,可得∠E=(的度数―的度数)

(2)延长AE、CE分别交圆于B、D,则∠B=的度数,

∠C=的度数,

∴∠AEC=∠B+∠C=(的度数+的度数).

《圆周角定理的证明思想.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档