切线的判定定理教案

时间:2022-04-24 14:23:26 作者:网友上传 字数:5511字

无忧范文网小编为你整理了多篇《切线的判定定理教案》范文,希望对您的工作学习有帮助,你还可以在无忧范文网网可以找到更多《切线的判定定理教案》。

第一篇:切线的判定定理教案

切线的判定定理教案

【内容概述】

证明圆的切线是近几年中考常见的数学问题之一。最常用的是利用“经过半径的外端并且垂直于这条半径的直线是圆的切线”证明。

本内容通过动手操作得出切线的判定定理,再利用解决两道例题,总结归纳出两种具体的证法:

①当直线与圆有一个公共点时,把圆心和这个公共点连结起来,证明直线垂直于这条半径,简称为“连半径,证垂直”;

②当直线和圆的公共点没有明确时,可过圆心作直线的垂线,再证圆心到直线的距离等于半径,简称为“作垂直,证半径”。

归纳总结后,马上给予两道对应练习题巩固理解两种证明方法。

【教学重难点】

理解切线的判定方法,能选择正确的方法证明一条直线是圆的切线。

【教学目标】

掌握判断圆的切线的方法,并灵活解题。进一步培养使用“分类”与“归纳”等思想方法的能力。

【教学过程】

一、复习引入

平面内直线和圆存在着三种位置关系,即直线和圆相离、直线和圆相切、直线和圆相交,这三种位置关系中最重要的是直线和圆相切。那么怎样证明直线和圆相切呢?怎样判定一条直线是圆的切线?

⑴和圆只有一个公共点的直线是圆的切线;(定义)

⑵到圆心的'距离等于半径的直线是圆的切线;(d=r)

除了这两种方法,还有没有其他方法判定一条直线是圆的切线呢?

活动一:在练习本上画一个圆O,做一个半径OA,做一条直线L,使L经过点A且垂直于OA。这样的直线能画几条?这条直线和圆是什么位置关系?为什么?你得到了什么结论?

切线判定定理:经过直径的一端,且垂直于这条直径的直线是圆的切线。

活动二:分析定理。经过直径的一端,且垂直于这条直径的直线是圆的切线。

这个定理有什么用?证明一条直线是圆的切线,那根据这个判定定理,要证明一条直线是圆的切线,需要几个条件?分别是什么?

对定理的理解:①经过半径外端. ②垂直于这条半径。

定理中的两个条件缺一不可。

二、典型例题

例1:如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,

求证:直线AB是⊙O的切线。

证明:连结0C

∵0A=0B,CA=CB,

∴AB⊥OC。

∵直线AB经过半径0C的外端C,

并且垂直于半径0C,

∴AB是⊙O的切线。

【评析】一定要分清圆的切线的判定定理的条件与结论,特别要注意“经过半径的外端”和“垂直于这条半径”这两个条件缺一不可,否则就不是圆的切线。

例2:如图,P是∠BAC上的平分线上一点,PD⊥AC,垂足为D,请问AB与以P

为圆心、PD为半径的圆相切吗?为什么 ?

证明:过P作PE⊥AB于E

∵AP平分∠BAC,PD⊥AC

∴PE=PD(角平分线上的点到角两边距离相等)

∴圆心P到AB的距离PE=PD=半径

∴AB与圆相切

【设计意图】通过例一和例二的解答,总结证明切线的两种添加辅助线的方法。

①当直线与圆有一个公共点时,把圆心和这个公共点连结起来,证明直线垂直于这条半径,简称为“连半径,证垂直”;

②当直线和圆的公共点没有明确时,可过圆心作直线的垂线,再证圆心到直线的距离等于半径,简称为“作垂直,证半径”。

三、知识应用(练习)

1、如图,已知⊙O是△ABC的外接圆,AB是⊙O的直径,D是AB的延长线上

的一点,AE⊥DC交DC的延长线于点E,弦AC平分∠EAB。

求证:DE是⊙O的切线.

[分析]:因直线DE与⊙O有公共点C,故应采用“连半径,证垂直”的方法。

证明:连接OC,则OA=OC,

∴∠CAO=∠ACO(等边对等角)

∵AC平分∠EAB(已知)

∴∠EAC=∠CAO(角平分线的定义)

∴∠EAC=∠ACO(等量代换)

∴AE∥CO,(内错角相等,两直线平行)

又AE⊥DE,

∴CO⊥DC,

∴DE是⊙O的切线.

【评析】本题综合运用了圆的切线的性质与判定定理.一定要注意区分这两个定理的题设与结论,注意在什么情况下可以用切线的性质定理,在什么情况下可以用切线的判定定理.希望同学们通过本题对这两个定理有进一步的认识.本题若作OC⊥CD,就判断出了CD与⊙O相切,这是错误的.这样做相当于还未探究、判断,就以经得出了结论,显然是错误的。

2、如图,已知在△ABC中,CD是AB上的高,且CD=AB,E、F分别是AC、

BC的中点,求证:以EF为直径的⊙O 与AB 相切。

[分析]:因直线AB与⊙O无确定的公共点,故应采用“作垂直,证半径”方法。

证明:过O点作OH⊥AB于H

∵E、F分别为AC、BC的中点(已知)

∴EF∥AB,且EF=AB(三角形中位线平行于第三边,且等于第三边的一半)

∴G点为CD的中点,OH=GD=CD

∵CD=AB ∴EF=CD

∴OH=EF

∴AB为⊙O的切线

四、小结升华

本节课里,你学到了哪些知识,它们是如何应用的?

证明切线的方法:(1)直线和圆有交点时,“连半径,证垂直”;

(2)直线和圆无确定交点时,“作垂直,证半径”。

【设计意图】让学生自己通过这节课的学习归纳总结出本知识点,即判断直线与

圆相切的方法以及二种添加辅助线的方法。

第二篇:圆幂定理

圆幂定理

(1)相交弦定理

圆内的两条相交弦,被交点分成的两条线段长的积相等。或经过圆内一点引两条弦,各弦被这点所分成的两段的积相等。

(2)相交弦定理推论

如果弦与直径垂直相交,那么弦的一半是它所分直径所成的两条线段的比例中项。

(3)切割线定理: 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。

(4)切割线定理的推论:

从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。

(5)割线定理

从圆外一点引圆的两条割线,这一点到每条割线与圆交点的距离的积相等。

(6)弦切角定理

1、弦切角的定义:顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角。(弦切角就是切线与弦所夹的角)

2、弦切角定理:弦切角的度数等于它所夹的弧的圆周角。

第三篇:切线的判定和性质数学教案设计

切线的判定和性质数学教案设计

教学目标:

1、使学生深刻理解切线的判定定理,并能初步运用它解决有关问题;

2、通过判定定理和切线判定方法的学习,培养学生观察、分析、归纳问题的能力;

3、通过学生自己实践发现定理,培养学生学习的主动性和积极性.

教学重点:切线的判定定理和切线判定的方法;

教学难点:切线判定定理中所阐述的由位置来判定直线是圆的切线的两大要素:一是经过半径外端;二是直线垂直于这条半径;学生开始时掌握不好并极容易忽视.

教学过程设计

(一)复习、发现问题

1.直线与圆的三种位置关系

在图中,图(1)、图(2)、图(3)中的直线l和⊙O是什么关系?

2、观察、提出问题、分析发现(教师引导)

图(2)中直线l是⊙O的切线,怎样判定?根据切线的定义可以判定一条直线是不是圆的切线,但有时使用定义判定很不方便.我们从另一个侧面去观察,那就是直线和圆的位置怎样时,直线也是圆的切线呢?

如图,直线l到圆心O的距离OA等于圆O的半径,直线l是⊙O的切线.这时我们来观察直线l与⊙O的位置.

发现:(1)直线l经过半径OC的外端点C;(2)直线l垂直于半径0C.这样我们就得到了从位置上来判定直线是圆的切线的方法――切线的判定定理.

(二)切线的判定定理:

1、切线的判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线.

2、对定理的理解:

引导学生理解:①经过半径外端;②垂直于这条半径.

请学生思考:定理中的两个条件缺少一个行不行?定理中的两个条件缺一不可.

图(1)中直线了l经过半径外端,但不与半径垂直;图(2)(3)中直线l与半径垂直,但不经过半径外端.

从以上两个反例可以看出,只满足其中一个条件的直线不是圆的切线.

(三)切线的判定方法

教师组织学生归纳.切线的判定方法有三种:

①直线与圆有唯一公共点;②直线到圆心的距离等于该圆的半径;③切线的判定定理.

(四)应用定理,强化训练

例1已知:直线AB经过⊙O上的点C,并且OA=OB,CA=CB.

求证:直线AB是⊙O的切线.

分析:欲证AB是⊙O的切线.由于AB过圆上点C,若连结OC,则AB过半径OC的外端,只需证明OC⊥OB,数学教案-切线的判定和性质。

证明:连结0C

∵0A=0B,CA=CB,”

∴0C是等腰三角形0AB底边AB上的中线.

∴AB⊥OC.

直线AB经过半径0C的外端C,并且垂直于半径0C,所以AB是⊙O的切线.

练习1判断下列命题是否正确.

(1)经过半径外端的直线是圆的切线.

(2)垂直于半径的直线是圆的切线.

(3)过直径的外端并且垂直于这条直径的直线是圆的切线.

(4)和圆有一个公共点的直线是圆的切线.

(5)以等腰三角形的顶点为圆心,底边上的高为半径的圆与底边相切.

采取学生抢答的形式进行,并要求说明理由,

练习P106,1、2

目的:使学生初步会应用切线的判定定理,对定理加深理解)

(五)小结

1、知识:切线的判定定理.着重分析了定理成立的条件,在应用定理时,注重两个条件缺一不可.

2、方法:判定一条直线是圆的切线的三种方法:

(1)根据切线定义判定.即与圆有唯一公共点的直线是圆的切线。

(2)根据圆心到直线的距离来判定,即与圆心的距离等于圆的半径的直线是圆的切线.

(3)根据切线的判定定理来判定.

其中(2)和(3)本质相同,只是表达形式不同.解题时,灵活选用其中之一.

3、能力:初步会应用切线的判定定理.

(六)作业P115中2、4、5;P117中B组1.

切线的判定和性质(二)

教学目标:

1、使学生理解切线的性质定理及推论;

2、通过对圆的切线位置关系的观察,培养学生能从几何图形的直观位置归纳出几何性质的能力;

教学重点:切线的性质定理和推论1、推论2.

教学难点:利用“反证法”来证明切线的性质定理.

教学设计:

(一)基本性质

1、观察:(组织学生,使学生从感性认识到理性认识)

2、归纳:(引导学生完成)

(1)切线和圆有唯一公共点;(切线的定义)

(2)切线和圆心的距离等于圆的半径;

猜想:圆的切线垂直于经过切点的半径.

引导学生应用“反证法”证明.分三步:

(1)假设切线AT不垂直于过切点的半径OA,

(2)同时作一条AT的垂线OM.通过证明得到矛盾,OM<OA这条半径.则有直线和圆的位置关系中的数量关系,得AT和⊙O相交与题设相矛盾.

(3)承认所要的结论AT⊥AO.

切线的性质定理:圆的切线垂直于经过切点的半径.

指出:定理中题设和结论中涉及到的三个要点:切线、切点、垂直.

引导学生发现:

推论1:经过圆心且垂直于切线的直线必经过切点.

推论2:经过切点且垂于切线的直线必经过圆心.

引导学生分析性质定理及两个推论的条件和结论问的关系,总结出如下结论:

如果一条直线具备下列三个条件中的任意两个,就可推出第三个.

(1)垂直于切线;

(2)过切点;

(3)过圆心.

(二)归纳切线的性质

(1)切线和圆有唯一公共点;(切线的定义)

(2)切线和圆心的距离等于圆的半径;(判定方法(2)的逆命题)

(3)切线垂直于过切点的半径;(切线的性质定理)

(4)经过圆心垂直于切线的直线必过切点;(推论1)

(5)经过切点垂直于切线的直线必过圆心.(推论2)

(三)应用举例,强化训练.

例1、如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的切线互相垂直,垂足为D.

求证:AC平分∠DAB.

引导学生分析:条件CD是⊙O的切线,可得什么结论;由AD⊥CD,又可得什么.

证明:连结OC.

∴AC平分∠DAB.

例2、求证:如果圆的两条切线互相平行,则连结两个切点的线段是直径,初中数学教案《数学教案-切线的判定和性质》。

已知:AB、CD是⊙O的两条切线,E、F为切点,且AB∥CD

求证:连结E、F的'线段是直径。

证明:连结EO并延长

∵AB切⊙O于E,∴OE⊥AB,

∵AB∥CD,∴OE⊥CD.

∵CD是⊙O切线,F为切点,∴OE必过切点F

∴EF为⊙O直径

强化训练:P109,1

3、求证:经过直径两端点的切线互相平行。

已知:AB为⊙O直径,MN、CD为⊙O切线,切点为A、B

求证:MN∥CD

证明:∵MN切⊙O于A,AB为⊙O直径

∴MN⊥AB

∵CD切⊙O于B,B为半径外端

∴CD⊥AB,

∴MN∥CD.

(四)小结

1、知识:切线的性质:

(1)切线和圆有唯一公共点;(切线的定义)

(2)切线和圆心的距离等于圆的半径;(判定方法(2)的逆命题)

(3)切线垂直于过切点的半径;(切线的性质定理)

(4)经过圆心垂直于切线的直线必过切点;(推论1)

(5)经过切点垂直于切线的直线必过圆心.(推论2)

2、能力和方法:

凡是题目中给出切线的切点,往往“连结”过切点的半径.从而运用切线的性质定理,产生垂直的位置关系.

(五)作业教材P109练习2;教材P116中7.

切线的判定和性质(三)

教学目标:

1、使学生学能灵活运用切线的判定方法和切线的性质证明问题;

2、掌握运用切线的性质和切线的判定的有关问题中辅助线引法的基本规律;

3、通过对切线的综合型例题分析和论证,激发学生的思维.

教学重点:对切线的判定方法及其性质的准确、熟炼、灵活地运用.

教学难点:综合型例题分析和论证的思维过程.

教学设计:

(一)复习与归纳

1、切线的判定

切线的判定方法有三种:

①直线与圆有唯一公共点;

②直线到圆心的距离等于该圆的半径;

③切线的判定定理.即经过半径外端并且垂直于这条半径的直线是圆的切线.

2、切线的性质:

(1)切线和圆有唯一公共点;(切线的定义)

(2)切线和圆心的距离等于圆的半径;(判定方法(2)的逆命题)

(3)切线垂直于过切点的半径;(切线的性质定理)

(4)经过圆心垂直于切线的直线必过切点;(推论1)

(5)经过切点垂直于切线的直线必过圆心.(推论2)

(二)灵活应用

例1(P108例3)、已知AB是⊙O的直径,BC是⊙O的切线,切点为B,OC平行于弦AD.求证:DC是⊙O的切线.

证明:连结OD.

∵OA=OD,∴∠1=∠2,

∵AD∥OC,∴∠1=∠3、∠2=∠4

∴∠3=∠4

在△OBC和△ODC中,

OB=OD,∠3=∠4,OC=OC,

∴△OBC≌△ODC,∴∠OBC=∠ODC.

∵BC是⊙O的切线,∴∠OBC=90°,∴∠ODC=90°.

∴DC是⊙O的切线.

例2(P110例4)、如图,在以O为圆心的两个同心圆中,大圆的弦AB和CD相等,且AB与小圆相切于点E,求证:CD与小圆相切.

证明:连结OE,过O作OF⊥CD,垂足为F.

∵AB与小圆O切于点点E,∴OE⊥AB.

又∵AB=CD,

∴OF=OE,又OF⊥CD,

∴CD与小圆O相切.

学生归纳:(1)证明切线的两个常见方法(①连半径证垂直;②作垂直证半径.);

(2)“连结”过切点的半径,产生垂直的位置关系.

例3、已知:AB是半⊙O直径,CD⊥AB于D,EC是切线,E为切点

求证:CE=CF

证明:连结OE

∵BE=BO∴∠3=∠B

∵CE切⊙O于E

∴OE⊥CE∠2+∠3=90°

∵CD⊥AB∴∠4+∠B=90°

∴∠2=∠4

∵∠1=∠4∴∠1=∠2

∴CE=CF

以上例题让学生自主分析、论证,教师指导书写规范,观察学生推理的严密性和学生共同存在的问题,及时解决.

巩固练习:P111练习1、2.

(三)小结:

1、知识:(指导学生归纳)切线的判定方法和切线的性质

2、能力:①灵活运用切线的判定方法和切线的性质证明问题;②作辅助线的能力和技巧.

(四)作业:教材P115,1(1)、2、3.

探究活动

问题:(北京西城区,2002)已知:AB为⊙O的直径,P为AB延长线上的一个动点,过点P作⊙O的切线,设切点为C.

(1)当点P在AB延长线上的位置如图1所示时,连结AC,作∠APC的平分线,交AC于点D,请你测量出∠CDP的度数;

(2)当点P在AB延长线上的位置如图2和图3所示时,连结AC,请你分别在这两个图中用尺规作∠APC的平分线(不写做法,保留作固痕迹),设此角平分线交AC于点D,然后在这两个图中分别测量出∠CDP的度数;

猜想:∠CDP的度数是否随点P在AB延长线上的位置的变化而变化?请对称的猜想加以证明.

解:(1) 测量结果:

(2)图2中的测量结果:

图3中的测量结果:

猜想:

证明:

解:(1) 测量结果:∠CDP=45°.

(2)图2中的测量结果:∠CDP=45°.

图3中的测量结果:∠CDP=45°.

猜想:∠CDP=45°,不随点P在AB延长线上的位置的变化而变化.

证明:连结OC.

∵PC切⊙O于点C,

∴PC⊥OC,

∴∠1+∠CPO=90°,

∵PC平分∠APC,

∴∠2=1/2∠CPO.

∵OA=OC

∴∠A=∠3.

∴∠1=∠A+∠3,

∴∠A=1/2∠1.

∴∠CDP=∠A+∠2=1/2(∠1+∠CPO)=45°.

∴猜想正确.

数学教案-切线的判定和性质

《切线的判定定理教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档