无忧范文网小编为你整理了多篇《圆的相关定理》范文,希望对您的工作学习有帮助,你还可以在无忧范文网网可以找到更多《圆的相关定理》。
第一篇:圆的相关定理
圆幂定理
定义
圆幂=PO^2-R^2(该结论为欧拉公式)所以圆内的点的幂为负数,圆外的点的幂为正数,圆上的点的幂为零。相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
割线定理:从圆外一点P引两条割线与圆分别交于A、B;C、D,则有 PA·PB=PC·PD。
统一归纳:过任意不在圆上的一点P引两条直线L
1、L2,L1与圆交于
A、B(可重合,即切线),L2与圆交于C、D(可重合),则有PA·PB=PC·PD。
相交弦定理
圆内的两条相交弦,被交点分成的两条线段长的积相等。(经过圆内一点引两条弦,各弦被这点所分成的两段的积相等)
相交弦说明
几何语言:
若弦AB、CD交于点P
则PA·PB=PC·PD(相交弦定理)
推论:如果弦与直径垂直相交,那么弦的一半是它分
直径所成的两条线段的例中项
几何语言:
若AB是直径,CD垂直AB于点P, 则PC^2=PA·PB(相交弦定理推论)
切割线定理
定义
从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。是圆幂定理的一种。
几何语言:
∵PT切⊙O于点T,PBA是⊙O的割线
∴PT的平方=PA·PB(切割线定理)推论:
从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等
几何语言:
∵PT是⊙O切线,PBA,PDC是⊙O的割线
∴PD·PC=PA·PB(切割线定理推论)(割线定理)
由上可知:PT∧2(平方)=PA·PB=PC·PD
证明
切割线定理证明:
设ABP是⊙O的一条割线,PT是⊙O的一条切线,切点为T,则PT^2=PA·PB
证明:连接AT, BT
∵∠PTB=∠PAT(弦切角定理)
∠P=∠P(公共角)
∴△PBT∽△PTA(两角对应相等,两三角形相似)
则PB:PT=PT:AP
即:PT^2=PB·PA
割线定理
定义
从圆外一点引圆的两条割线,这一点到每条割线
与圆交点的距离的积相等。
从圆外一点L引两条割线与圆分别交于A.B.C.D 则有
LA·LB=LC·LD。如下图所示。(LT是切线)
证明
如图直线ABP和CDP是自点P引的⊙O的两条割线,则PA·PB=PC·PD证明:连接AD、BC
∵∠A和∠C都对弧BD
∴由圆周角定理,得 ∠A=∠C
又∵∠APD=∠CPB
∴△ADP∽△CBP
∴AP:CP=DP:BP, 也就是AP·BP=CP·DP
切线的判定定理
经过半径的外端并且垂直于这条半径的直线是圆的切线
几何语言: ∵l ⊥OA,点A在⊙O上
∴直线l是⊙O的切线(切线判定定理)
切线的性质定理
圆的切线垂直于经过切点半径
几何语言: ∵OA是⊙O的半径,直线l切⊙O于点A
∴l ⊥OA(切线性质定理)
推论1 经过圆心且垂直于切线的直径必经过切点
推论2 经过切点且垂直于切线的直线必经过圆心
切线长定理
从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角
几何语言: ∵直线PA、PB分别切⊙O于A、B两点
∴PA=PB,∠APO=∠BPO(切线长定理)
证明:连结OA、OB
∵直线PA、PB分别切⊙O于A、B两点
∴OA⊥AP、OB⊥PB
∴∠OAP=∠OBP=90°
在△OPA和△OPB中:
∠OAP=∠OBPOP=OPOA=OB=r∴△OPA≌△OPB(HL)
∴PA=PB,∠APO=∠BPO
弦切角定理
弦切角(即图中∠ACD)等于它所夹的弧(弧AC)对的圆周角等于所夹的弧的读数的一半等于1/2所夹的弧的圆心角 [注,由于网上找得的图不是很完整,图中没有连结OC]
几何语言:∵∠ACD所夹的是弧AC ∴∠ACD=∠ABC=1/2∠COA=1/2弧AC的度数(弦切角定理)
推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等几何语言:∵∠1所夹的是弧MN ,∠2所夹的是PQ ,弧MN = 弧PQ
∴∠1=∠
2证明:作AD⊥EC
∵∠ADC=90°
∴∠ACD+∠CAD=90°
∵ED与⊙O切于点C∴OC⊥ED∴∠OCD=∠OCA+∠ACD=90°∴∠OCA=∠CAD∵OC=OA=r∴∠OCA=∠OAC∴∠COA=180°-∠OCA-∠OAC=180°-2∠CAD又∵∠ACD=90°-∠CAD∴∠ACDC=1/2∠COA
∴∠ACD=∠ABC=1/2∠COA=1/2弧AC的度数
弦切角概念
顶点在圆上,一边和圆相交、另一边和圆相切的角叫做弦切角.它是继圆心角、圆周角之后第三种与圆有关的角.这种角必须满足三个条件:
(1)顶点在圆上,即角的顶点是圆的一条切线的切点;
(2)角的一边和圆相交,即角的一边是过切点的一条弦所在的射线;
(3)角的另一边和圆相切,即角的另一边是切线上以切点为端点的一条射线.
它们是判断一个角是否为弦切角的标准,三者缺一不可。
(4)弦切角可以认为是圆周角的一个特例,即圆周角的一边绕顶点旋转到与圆相切时所成的角.正因为如此,弦切角具有与圆周角类似的性质.
相关公式
弧长计算公式:L=n兀R/180
扇形面积公式:S扇形=n兀R^2/360=LR/2
内公切线长= d-(R-r) 外公切线长= d-(R+r)
圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标
第二篇:圆的相关定理复习
圆的相关定理
1.圆的定义:________________________________________________________.
2.垂径定理:垂直于弦的直径平分弦,并且______________________________.
3.圆心角、弧、弦、弦心距的关系定理:在同圆或等圆中,如果有两个圆心角相等,那么这两个圆心角所夹的弧相等,所对的______相等,所对的________相等.
4.圆周角定理:圆周角的度数等于它所夹弧所对的____________________的一半.
5.切线长定理:从圆外一点引圆的两条切线,那么__________相等,并且这一点和圆心的连线______两条切线的夹角.
6.弦切角定理:从圆上一点引圆的一条切线和一条弦,弦切角等于它所夹_____对的______角.
7.相交弦定理:圆内的两条相交弦被交点分成的两条线段的乘积__________.
8.切割线定理:从圆外一点引圆的一条切线和一条割线,那么切线长的平方等于这一点到圆上两个点之间的两条线段的乘积.
9.圆内接四边形定理:圆内接四边形的对角______,每一个外角等于其内对角.
10.___________的三点确定一个圆.三角形的外接圆是指______________________,此时三角形是圆的_______三角形,圆心是三角形的_____心;三角形的内切圆是指__________________,此时三角形是圆的_______三角形,圆心是三角形的_____心.
11.点与圆的位置关系有_____种,分别是____________,___________,__________; 直线与圆的位置关系有______种,分别是
_____________,______________,_______________;
圆与圆的位置关系有________种,分别是
_________,_________,________,_________,____________.
12.圆的切线的识别定理:_______________________________________________
________________________________________.
13.在半径为r的圆中,面积为S=_______.周长C=______,若一个扇形的圆心角为
n,则扇形弧长为____________,面积为__________________________________
14.圆锥的侧面展开图是_____,已知母线长为a,底面圆半径为r,则侧面积为_________,全面积为___________________.
15.圆柱的侧面展开图是______,已知母线长为a,底面圆半径为r,则侧面积为_________,全面积为___________________.
第三篇:圆幂定理
圆幂定理
(1)相交弦定理
圆内的两条相交弦,被交点分成的两条线段长的积相等。或经过圆内一点引两条弦,各弦被这点所分成的两段的积相等。
(2)相交弦定理推论
如果弦与直径垂直相交,那么弦的一半是它所分直径所成的两条线段的比例中项。
(3)切割线定理: 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
(4)切割线定理的推论:
从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。
(5)割线定理
从圆外一点引圆的两条割线,这一点到每条割线与圆交点的距离的积相等。
(6)弦切角定理
1、弦切角的定义:顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角。(弦切角就是切线与弦所夹的角)
2、弦切角定理:弦切角的度数等于它所夹的弧的圆周角。
第四篇:圆相关定理
弦切角定理
一、弦切角
1、弦切角定义:顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角(弦切角就是切线与弦所夹的角)
如右图所示,直线PT切圆O于点C,BC、AC为圆O的弦,∠TCB,∠TCA,∠PCA,∠PCB都为弦切角。
二、弦切角定理
1、弦切角定理:弦切角的度数等于它所夹的弧的圆心角的度数的一半
2、弦切角定理证明(分三种情况讨论):
已知:AC是⊙O的弦,AB是⊙O的切线,A为切点,弧是弦切角∠BAC所夹的弧.求证:弦切角定理
①圆心O在∠BAC的一边AC上
∵AC为直径,AB切⊙O于A,
∴弧CmA=弧CA
∵为半圆,
∴∠CAB=90=弦CA所对的圆周角
②圆心O在∠BAC的内部
过A作直径AD交⊙O于D,若在优弧m所对的劣弧上有一点E,连接EC、ED、EA∴∠CED=∠CAD ∠DEA=∠DAB
∴ ∠CEA=∠CAB
③圆心O在∠BAC的外部,
过A作直径AD交⊙O于DB
∴∠CDA+∠CAD=∠CAB+∠CAD=90
∴∠CDA=∠CAB
三、弦心角推论
1、推论内容:若两弦切角所夹的弧相等,则这两个弦切角也相等
2、应用:
Eg.如图,ΔABC内接于⊙O,AB是⊙O直径,CD⊥AB于D,MN切⊙O于C
求证:AC平分∠MCD,BC平分∠NCD.证明:∵AB是⊙O直径
∴∠ACB=90
∵CD⊥AB
∴∠ACD=∠B,
∵MN切⊙O于C
∴∠MCA=∠B,
∴∠MCA=∠ACD,
即AC平分∠MCD,
同理:BC平分∠NCD.
圆幂定理——相交弦定理
一、相交弦定理
1、相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等(经过圆内一点引两条弦,各弦被这点所分成的两段的积相等)
几何语言:
∵弦AB、CD交于点P ∴PA·PB=PC·PD(相交弦定理)
1、推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项 P.S.1、几何中比例中项的概念:如果a、b、c三个量成连比例即a:b=b:c,b叫做a和c的比例中项。
22、性质:b=a*c
几何语言:
∵AB是直径,CD垂直AB于点P
2∴PC=PA·PB(相交弦定理推论)
二、相交弦定理证明
证明:连结AC,BD
由圆周角定理的推论
得∠A=∠D,∠C=∠B(圆周角推论2: 同(等)弧所对圆周角相等)
∴△PAC∽△PDB,
∴PA∶PD=PC∶PB,PA·PB=PC·PD
圆幂定理——切割线定理
一、切割线定理
1、切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项
几何语言:
∵PT切⊙O于点T,PBA是⊙O的割线2∴PT=PA·PB(切割线定理)
2、推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等
几何语言:
∵PBA,PDC是⊙O的割线
∴PD·PC=PA·PB(切割线定理推论)/(割线定理)
2由上可知:PT
=PA·PB
2即PT=PC·PD
二、切割线定理证明
已知:如图ABP是⊙O的一条割线,PT是⊙O的一条切线,切点为T,
2证明:PT=PA·PB
证明:连接AT, BT
∵∠PTB=∠PAT(弦切角定理)
∠P=∠P(公共角)
∴△PBT∽△PTA(两角对应相等,两三角形相似)
则PB:PT=PT:AP
2即:PT=PA·PB
圆幂定理——割线定理
一、割线定理
1、割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆交点的距离的积相等 从圆外一点P引两条割线与圆分别交于A.B.C.D 则有 LA·LB=LC·LD。如图所示。(LT是
切线)
二、割线定理证明
已知:如图直线ABP和CDP是自点P引的⊙O的两条割线
证明:PA·PB=PC·PD
证明:连接AD、BC
∵∠A和∠C都对弧BD
∴由圆周角定理,
∠A=∠C
又∵∠APD=∠CPB
∴△ADP∽△CBP
∴AP:CP=DP:BP,
即PA·PB=PC
·PD
第五篇:数学教案-切线的判定和性质
数学教案-切线的判定和性质
切线的判定和性质(一)
教学目标:
1、使学生深刻理解切线的判定定理,并能初步运用它解决有关问题;
2、通过判定定理和切线判定方法的学习,培养学生观察、分析、归纳问题的能力;
3、通过学生自己实践发现定理,培养学生学习的主动性和积极性.
教学重点:切线的判定定理和切线判定的方法;
教学难点:切线判定定理中所阐述的由位置来判定直线是圆的切线的两大要素:一是经过半径外端;二是直线垂直于这条半径;学生开始时掌握不好并极容易忽视.
教学过程设计
(一)复习、发现问题
1.直线与圆的三种位置关系
在图中,图(1)、图(2)、图(3)中的直线l和⊙O是什么关系?
2、观察、提出问题、分析发现(教师引导)
图(2)中直线l是⊙O的切线,怎样判定?根据切线的定义可以判定一条直线是不是圆的切线,但有时使用定义判定很不方便.我们从另一个侧面去观察,那就是直线和圆的位置怎样时,直线也是圆的切线呢?
如图,直线l到圆心O的距离OA等于圆O的半径,直线l是⊙O的切线.这时我们来观察直线l与⊙O的位置.
发现:(1)直线l经过半径OC的外端点C;(2)直线l垂直于半径0C.这样我们就得到了从位置上来判定直线是圆的切线的方法――切线的判定定理.
(二)切线的判定定理:
1、切线的判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线.
2、对定理的理解:
引导学生理解:①经过半径外端;②垂直于这条半径.
请学生思考:定理中的两个条件缺少一个行不行?定理中的两个条件缺一不可.
图(1)中直线了l经过半径外端,但不与半径垂直;图(2)(3)中直线l与半径垂直,但不经过半径外端.
从以上两个反例可以看出,只满足其中一个条件的直线不是圆的切线.
(三)切线的判定方法
教师组织学生归纳.切线的判定方法有三种:
①直线与圆有唯一公共点;②直线到圆心的距离等于该圆的半径;③切线的判定定理.
(四)应用定理,强化训练
例1已知:直线AB经过⊙O上的点C,并且OA=OB,CA=CB.
求证:直线AB是⊙O的切线.
分析:欲证AB是⊙O的切线.由于AB过圆上点C,若连结OC,则AB过半径OC的外端,只需证明OC⊥OB。
证明:连结0C
∵0A=0B,CA=CB,”
∴0C是等腰三角形0AB底边AB上的中线.
∴AB⊥OC.
直线AB经过半径0C的外端C,并且垂直于半径0C,所以AB是⊙O的切线.
练习1判断下列命题是否正确.
(1)经过半径外端的直线是圆的切线.
(2)垂直于半径的直线是圆的切线.
(3)过直径的外端并且垂直于这条直径的直线是圆的切线.
(4)和圆有一个公共点的直线是圆的切线.
(5)以等腰三角形的顶点为圆心,底边上的高为半径的圆与底边相切.
采取学生抢答的形式进行,并要求说明理由,
练习P106,1、2
目的:使学生初步会应用切线的判定定理,对定理加深理解)
(五)小结
1、知识:切线的判定定理.着重分析了定理成立的'条件,在应用定理时,注重两个条件缺一不可.
2、方法:判定一条直线是圆的切线的三种方法:
(1)根据切线定义判定.即与圆有唯一公共点的直线是圆的切线。
(2)根据圆心到直线的距离来判定,即与圆心的距离等于圆的半径的直线是圆的切线.
(3)根据切线的判定定理来判定.
其中(2)和(3)本质相同,只是表达形式不同.解题时,灵活选用其中之一.
3、能力:初步会应用切线的判定定理.
(六)作业P115中2、4、5;P117中B组1.
切线的判定和性质(二)
教学目标:
1、使学生理解切线的性质定理及推论;
2、通过对圆的切线位置关系的观察,培养学生能从几何图形的直观位置归纳出几何性质的能力;
教学重点:切线的性质定理和推论1、推论2.
教学难点:利用“反证法”来证明切线的性质定理.
教学设计:
(一)基本性质
1、观察:(组织学生,使学生从感性认识到理性认识)
2、归纳:(引导学生完成)
(1)切线和圆有唯一公共点;(切线的定义)
(2)切线和圆心的距离等于圆的半径;
猜想:圆的切线垂直于经过切点的半径.
引导学生应用“反证法”证明.分三步:
(1)假设切线AT不垂直于过切点的半径OA,
(2)同时作一条AT的垂线OM.通过证明得到矛盾,OM<OA这条半径.则有直线和圆的位置关系中的数量关系,得AT和⊙O相交与题设相矛盾.
(3)承认所要的结论AT⊥AO.
切线的性质定理:圆的切线垂直于经过切点的半径.
指出:定理中题设和结论中涉及到的三个要点:切线、切点、垂直.
引导学生发现:
推论1:经过圆心且垂直于切线的直线必经过切点.
推论2:经过切点且垂于切线的直线必经过圆心.
引导学生分析性质定理及两个推论的条件和结论问的关系,总结出如下结论:
如果一条直线具备下列三个条件中的任意两个,就可推出第三个.
(1)垂直于切线;
(2)过切点;
(3)过圆心.
(二)归纳切线的性质
(1)切线和圆有唯一公共点;(切线的定义)
(2)切线和圆心的距离等于圆的半径;(判定方法(2)的逆命题)
(3)切线垂直于过切点的半径;(切线的性质定理)
(4)经过圆心垂直于切线的直线必过切点;(推论1)
(5)经过切点垂直于切线的直线必过圆心.(推论2)
(三)应用举例,强化训练.
例1、如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的切线互相垂直,垂足为D.
求证:AC平分∠DAB.
引导学生分析:条件CD是⊙O的切线,可得什么结论;由AD⊥CD,又可得什么.
证明:连结OC.
∴AC平分∠DAB.
例2、求证:如果圆的两条切线互相平行,则连结两个切点的线段是直径。
已知:AB、CD是⊙O的两条切线,E、F为切点,且AB∥CD
求证:连结E、F的线段是直径。
证明:连结EO并延长
∵AB切⊙O于E,∴OE⊥AB,
∵AB∥CD,∴OE⊥CD.
∵CD是⊙O切线,F为切点,∴OE必过切点F
∴EF为⊙O直径
强化训练:P109,1
3、求证:经过直径两端点的切线互相平行。
已知:AB为⊙O直径,MN、CD为⊙O切线,切点为A、B
求证:MN∥CD
证明:∵MN切⊙O于A,AB为⊙O直径
∴MN⊥AB
∵CD切⊙O于B,B为半径外端
∴CD⊥AB,
∴MN∥CD.
(四)小结
1、知识:切线的性质:
(1)切线和圆有唯一公共点;(切线的定义)
(2)切线和圆心的距离等于圆的半径;(判定方法(2)的逆命题)
(3)切线垂直于过切点的半径;(切线的性质定理)
(4)经过圆心垂直于切线的直线必过切点;(推论1)
(5)经过切点垂直于切线的直线必过圆心.(推论2)
2、能力和方法:
凡是题目中给出切线的切点,往往“连结”过切点的半径.从而运用切线的性质定理,产生垂直的位置关系.
(五)作业教材P109练习2;教材P116中7.
切线的判定和性质(三)
教学目标:
1、使学生学能灵活运用切线的判定方法和切线的性质证明问题;
2、掌握运用切线的性质和切线的判定的有关问题中辅助线引法的基本规律;
3、通过对切线的综合型例题分析和论证,激发学生的思维.
教学重点:对切线的判定方法及其性质的准确、熟炼、灵活地运用.
教学难点:综合型例题分析和论证的思维过程.
教学设计:
(一)复习与归纳
1、切线的判定
切线的判定方法有三种:
①直线与圆有唯一公共点;
②直线到圆心的距离等于该圆的半径;
③切线的判定定理.即经过半径外端并且垂直于这条半径的直线是圆的切线.
2、切线的性质:
(1)切线和圆有唯一公共点;(切线的定义)
(2)切线和圆心的距离等于圆的半径;(判定方法(2)的逆命题)
(3)切线垂直于过切点的半径;(切线的性质定理)
(4)经过圆心垂直于切线的直线必过切点;(推论1)
(5)经过切点垂直于切线的直线必过圆心.(推论2)
(二)灵活应用
例1(P108例3)、已知AB是⊙O的直径,BC是⊙O的切线,切点为B,OC平行于弦AD.求证:DC是⊙O的切线.
证明:连结OD.
∵OA=OD,∴∠1=∠2,
∵AD∥OC,∴∠1=∠3、∠2=∠4
∴∠3=∠4
在△OBC和△ODC中,
OB=OD,∠3=∠4,OC=OC,
∴△OBC≌△ODC,∴∠OBC=∠ODC.
∵BC是⊙O的切线,∴∠OBC=90°,∴∠ODC=90°.
∴DC是⊙O的切线.
例2(P110例4)、如图,在以O为圆心的两个同心圆中,大圆的弦AB和CD相等,且AB与小圆相切于点E,求证:CD与小圆相切.
证明:连结OE,过O作OF⊥CD,垂足为F.
∵AB与小圆O切于点点E,∴OE⊥AB.
又∵AB=CD,
∴OF=OE,又OF⊥CD,
∴CD与小圆O相切.
学生归纳:(1)证明切线的两个常见方法(①连半径证垂直;②作垂直证半径.);
(2)“连结”过切点的半径,产生垂直的位置关系.
例3、已知:AB是半⊙O直径,CD⊥AB于D,EC是切线,E为切点
求证:CE=CF
证明:连结OE
∵BE=BO∴∠3=∠B
∵CE切⊙O于E
∴OE⊥CE∠2+∠3=90°
∵CD⊥AB∴∠4+∠B=90°
∴∠2=∠4
∵∠1=∠4∴∠1=∠2
∴CE=CF
以上例题让学生自主分析、论证,教师指导书写规范,观察学生推理的严密性和学生共同存在的问题,及时解决.
巩固练习:P111练习1、2.
(三)小结:
1、知识:(指导学生归纳)切线的判定方法和切线的性质
2、能力:①灵活运用切线的判定方法和切线的性质证明问题;②作辅助线的能力和技巧.
(四)作业:教材P115,1(1)、2、3.
探究活动
问题:(北京西城区,2002)已知:AB为⊙O的直径,P为AB延长线上的一个动点,过点P作⊙O的切线,设切点为C.
(1)当点P在AB延长线上的位置如图1所示时,连结AC,作∠APC的平分线,交AC于点D,请你测量出∠CDP的度数;
(2)当点P在AB延长线上的位置如图2和图3所示时,连结AC,请你分别在这两个图中用尺规作∠APC的平分线(不写做法,保留作固痕迹),设此角平分线交AC于点D,然后在这两个图中分别测量出∠CDP的度数;
猜想:∠CDP的度数是否随点P在AB延长线上的位置的变化而变化?请对称的猜想加以证明.
解:(1) 测量结果:
(2)图2中的测量结果:
图3中的测量结果:
猜想:
证明:
解:(1) 测量结果:∠CDP=45°.
(2)图2中的测量结果:∠CDP=45°.
图3中的测量结果:∠CDP=45°.
猜想:∠CDP=45°,不随点P在AB延长线上的位置的变化而变化.
证明:连结OC.
∵PC切⊙O于点C,
∴PC⊥OC,
∴∠1+∠CPO=90°,
∵PC平分∠APC,
∴∠2=1/2∠CPO.
∵OA=OC
∴∠A=∠3.
∴∠1=∠A+∠3,
∴∠A=1/2∠1.
∴∠CDP=∠A+∠2=1/2(∠1+∠CPO)=45°.
∴猜想正确.
数学教案-切线的判定和性质