初中数学证明弧相等的方法(推荐2篇)

时间:2022-04-24 14:23:41 作者:网友上传 字数:1593字

无忧范文网小编为你整理了多篇《初中数学证明弧相等的方法(推荐2篇)》范文,希望对您的工作学习有帮助,你还可以在无忧范文网网可以找到更多《初中数学证明弧相等的方法(推荐2篇)》。

第一篇:初中数学证明弧相等的方法

初中数学证明弧相等的方法

导语:随着数学日益广泛地向各门科学渗透,与各种对象和各种问题相结合,人们正在从中提炼出各种新的数学模型,创建各种新的数学工具。下面就由小编为大家带来初中数学解题方法:证明弧相等的方法,大家一起去看看怎么做吧!

证明弧相等的方法

1、定义;同圆或等圆中,能够完全重合的两段弧。

2、垂径定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧。

推论1:①平分弦(不是直径)的直径垂直弦,并且平分弦所对的两条弧。

②垂直平分一条弦的.直线,经过圆心,并且平分弦所对的两条弧。

③平分一条弦所对的弧的直径,垂直平分弦,并且平分弦所对的另一条弧。

推论2:两条平行弦所夹的弧相等

3、圆心角、弧、圆周角之间度数关系;(圆心角 = 弧 = 2圆周角)

4、圆周角定理的推论1;(同弧或等弧所对的圆周角相等,同圆或等圆中相等的圆周角所对的弧相等)

切线小结

1、证明切线的三种方法:

⑴定义――一个交点;

⑵d=r(若一条直线到圆心的距离等于半径,则这条直线是圆的切线);

⑶切线的判定定理;(经过半径外端,并且垂直这条半径的直线是圆的切线)

2、切线的八个性质:

⑴定义:唯一交点;

⑵切线和圆心的距离等于半径(d=r);

⑶切线的性质定理:圆的切线垂直于过切点的半径;

⑷推论1:过圆心(且垂直于切线的直线)必过切点;

⑸推论2:过切点(且垂直于切线的直线)必过圆心;

⑹切线长相等;过圆外一点作圆的两条切线,它们的切线长相等,并且这一点和圆心的连线平分两切线的夹角。

⑺ 连接两平行切线切点间的线段为直径

⑻ 经过直径两端点的切线互相平行。

3、证明切线的两种类型:

⑴已知直线和圆相交于一点

证明方法:连交点,证垂直

⑵未知直线和圆是否相交于哪点或没告诉交点

证明方法:做垂直,证半径

第二篇:高一数学知识点总结

1.多面体的结构特征

(1)棱柱有两个面相互平行,其余各面都是平行四边形,每相邻两个四边形的公共边平行。

正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多边形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多边形,侧棱垂直于底面,侧面是矩形。

(2)棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形。

正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫做正棱锥.特别地,各棱均相等的正三棱锥叫正四面体.反过来,正棱锥的底面是正多边形,且顶点在底面的射影是底面正多边形的中心。

(3)棱台可由平行于底面的平面截棱锥得到,其上下底面是相似多边形。

2.旋转体的结构特征

(1)圆柱可以由矩形绕一边所在直线旋转一周得到.

(2)圆锥可以由直角三角形绕一条直角边所在直线旋转一周得到.

(3)圆台可以由直角梯形绕直角腰所在直线旋转一周或等腰梯形绕上下底面中心所在直线旋转半周得到,也可由平行于底面的平面截圆锥得到。

(4)球可以由半圆面绕直径旋转一周或圆面绕直径旋转半周得到。

3.空间几何体的三视图

空间几何体的三视图是用平行投影得到,这种投影下,与投影面平行的平面图形留下的影子,与平面图形的形状和大小是全等和相等的,三视图包括正视图、侧视图、俯视图。

三视图的长度特征:“长对正,宽相等,高平齐”,即正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽.若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法。

4.空间几何体的直观图

空间几何体的直观图常用斜二测画法来画,基本步骤是:

(1)画几何体的底面

在已知图形中取互相垂直的x轴、y轴,两轴相交于点O,画直观图时,把它们画成对应的x′轴、y′轴,两轴相交于点O′,且使∠x′O′y′=45°或135°,已知图形中平行于x轴、y轴的线段,在直观图中平行于x′轴、y′轴.已知图形中平行于x轴的线段,在直观图中长度不变,平行于y轴的线段,长度变为原来的一半。

(2)画几何体的高

在已知图形中过O点作z轴垂直于xOy平面,在直观图中对应的z′轴,也垂直于x′O′y′平面,已知图形中平行于z轴的线段,在直观图中仍平行于z′轴且长度不变。

《初中数学证明弧相等的方法(推荐2篇).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档