初中数学几何图形综合题(合集)

时间:2022-04-24 14:23:41 作者:网友上传 字数:10283字

无忧范文网小编为你整理了多篇《初中数学几何图形综合题(合集)》范文,希望对您的工作学习有帮助,你还可以在无忧范文网网可以找到更多《初中数学几何图形综合题(合集)》。

第一篇:学前班数学教案几何图形综合

学前班数学教案:几何图形综合

复习几何图形活动名称:复习几何图形活动设计:

活动时间:活动形式:分组预定目标:

1、复习几何图形的认识(圆形,三角形,正方形,长方形)。并能简单拼搭

2、让幼儿感知集合,培养幼儿的动手能力和想像能力教育资源:各种几何图形,胶水 纸预定程序:

一:复习认识图形,感知集合1: 幼儿坐成圆圈,教师出示纸袋(内有各种几何图形)请幼儿来摸,幼儿从纸袋内任意拿出一张卡片,并告诉大家是什么图形,说对的表扬,说错的纠正2:出示教具,学习分类,感知集合教师出示教具(示先准备好的几何拼图),请幼儿观察,请个别幼儿把图形归类,选把圆形找出来,在找三角形……等边3:幼儿和图形作游戏 ,教师说:今天我们要来比一下,看哪个一小朋友站的快,拿正方形卡片的小朋友站在正方形里,那圆形卡片的站在圆形里二:组操作活动。:育 & 婴 …… 会1:同种图形拼搭如取出的三角形,拼后说像鱼……等2:不同图形拼搭让幼儿在圆形,三角形,正方形,长方形不同图形中取出任意拼(幼儿拼搭时教师多鼓力幼儿要动脑筋,拼的和别人不一样,并巡回指导)教师主要多启发幼儿拼搭活动反思:

第二篇:高一数学知识点总结

本节内容主要是空间点、直线、平面之间的位置关系,在认识过程中,可以进一步提高同学们的空间想象能力,发展推理能力.通过对实际模型的认识,学会将文字语言转化为图形语言和符号语言,以具体的长方体中的点、线、面之间的关系作为载体,使同学们在直观感知的基础上,认识空间中点、线、面之间的位置关系,点、线、面的位置关系是立体几何的主要研究对象,同时也是空间图形最基本的几何元素.

重难点知识归纳

1、平面

(1)平面概念的理解

直观的理解:桌面、黑板面、平静的水面等等都给人以平面的直观的印象,但它们都不是平面,而仅仅是平面的一部分.

抽象的理解:平面是平的,平面是无限延展的,平面没有厚薄.

(2)平面的表示法

①图形表示法:通常用平行四边形来表示平面,有时根据实际需要,也用其他的平面图形来表示平面.

②字母表示:常用等希腊字母表示平面.

(3)涉及本部分内容的符号表示有:

①点A在直线l内,记作; ②点A不在直线l内,记作;

③点A在平面内,记作; ④点A不在平面内,记作;

⑤直线l在平面内,记作; ⑥直线l不在平面内,记作;

注意:符号的使用与集合中这四个符号的使用的区别与联系.

(4)平面的基本性质

公理1:如果一条直线的两个点在一个平面内,那么这条直线上的所有点都在这个平面内.

符号表示为:.

注意:如果直线上所有的点都在一个平面内,我们也说这条直线在这个平面内,或者称平面经过这条直线.

公理2:过不在一条直线上的三点,有且只有一个平面.

符号表示为:直线AB存在唯一的平面,使得.

注意:“有且只有”的含义是:“有”表示存在,“只有”表示唯一,不能用“只有”来代替.此公理又可表示为:不共线的三点确定一个平面.

公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.

符号表示为:.

注意:两个平面有一条公共直线,我们说这两个平面相交,这条公共直线就叫作两个平面的交线.若平面、平面相交于直线l,记作.

公理的推论:

推论1:经过一条直线和直线外的一点有且只有一个平面.

推论2:经过两条相交直线有且只有一个平面.

推论3:经过两条平行直线有且只有一个平面.

2.空间直线

(1)空间两条直线的位置关系

①相交直线:有且仅有一个公共点,可表示为;

②平行直线:在同一个平面内,没有公共点,可表示为a//b;

③异面直线:不同在任何一个平面内,没有公共点.

(2)平行直线

公理4:平行于同一条直线的两条直线互相平行.

符号表示为:设a、b、c是三条直线,.

定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等.

(3)两条异面直线所成的角

注意:

①两条异面直线a,b所成的角的范围是(0°,90°].

②两条异面直线所成的角与点O的选择位置无关,这可由前面所讲过的“等角定理”直接得出.

③由两条异面直线所成的角的定义可得出异面直线所成角的一般方法:

(i)在空间任取一点,这个点通常是线段的中点或端点.

(ii)分别作两条异面直线的平行线,这个过程通常采用平移的方法来实现.

(iii)指出哪一个角为两条异面直线所成的角,这时我们要注意两条异面直线所成的角的范围.

3.空间直线与平面

直线与平面位置关系有且只有三种:

(1)直线在平面内:有无数个公共点;

(2)直线与平面相交:有且只有一个公共点;

(3)直线与平面平行:没有公共点.

4.平面与平面

两个平面之间的位置关系有且只有以下两种:

(1)两个平面平行:没有公共点;

(2)两个平面相交:有一条公共直线.

s("content_relate");

【【荐】高一数学知识点总结】相关文章:

高一政治必修一知识点总结12-14

数学培优补差工作总结【荐】03-05

初中数学圆的知识点总结03-01

初中数学圆的知识点总结归纳09-15

高一地理知识点的总结09-23

高一数学教学总结汇总9篇09-28

数学考试反思【荐】02-21

【荐】数学考试反思02-16

最新初三数学上册的知识点总结07-30

高一化学方程式知识点总结08-03

第三篇:高一数学知识点总结

【(一)、映射、函数、反函数】

1、对应、映射、函数三个概念既有共性又有区别,映射是一种特殊的对应,而函数又是一种特殊的映射.

2、对于函数的概念,应注意如下几点:

(1)掌握构成函数的三要素,会判断两个函数是否为同一函数.

(2)掌握三种表示法――列表法、解析法、图象法,能根实际问题寻求变量间的函数关系式,特别是会求分段函数的解析式.

(3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的复合函数,其中g(x)为内函数,f(u)为外函数.

3、求函数y=f(x)的反函数的一般步骤:

(1)确定原函数的值域,也就是反函数的定义域;

(2)由y=f(x)的解析式求出x=f-1(y);

(3)将x,y对换,得反函数的习惯表达式y=f-1(x),并注明定义域.

注意①:对于分段函数的反函数,先分别求出在各段上的反函数,然后再合并到一起.

②熟悉的应用,求f-1(x0)的值,合理利用这个结论,可以避免求反函数的过程,从而简化运算.

【(二)、函数的解析式与定义域】

1、函数及其定义域是不可分割的整体,没有定义域的函数是不存在的,因此,要正确地写出函数的解析式,必须是在求出变量间的对应法则的同时,求出函数的定义域.求函数的定义域一般有三种类型:

(1)有时一个函数来自于一个实际问题,这时自变量x有实际意义,求定义域要结合实际意义考虑;

(2)已知一个函数的解析式求其定义域,只要使解析式有意义即可.如:

①分式的分母不得为零;

②偶次方根的被开方数不小于零;

③对数函数的真数必须大于零;

④指数函数和对数函数的底数必须大于零且不等于1;

⑤三角函数中的正切函数y=tanx(x∈R,且k∈Z),余切函数y=cotx(x∈R,x≠kπ,k∈Z)等.

应注意,一个函数的解析式由几部分组成时,定义域为各部分有意义的自变量取值的公共部分(即交集).

(3)已知一个函数的定义域,求另一个函数的定义域,主要考虑定义域的深刻含义即可.

已知f(x)的定义域是[a,b],求f[g(x)]的定义域是指满足a≤g(x)≤b的x的取值范围,而已知f[g(x)]的定义域[a,b]指的是x∈[a,b],此时f(x)的定义域,即g(x)的值域.

2、求函数的解析式一般有四种情况

(1)根据某实际问题需建立一种函数关系时,必须引入合适的变量,根据数学的有关知识寻求函数的解析式.

(2)有时题设给出函数特征,求函数的解析式,可采用待定系数法.比如函数是一次函数,可设f(x)=ax+b(a≠0),其中a,b为待定系数,根据题设条件,列出方程组,求出a,b即可.

(3)若题设给出复合函数f[g(x)]的表达式时,可用换元法求函数f(x)的表达式,这时必须求出g(x)的值域,这相当于求函数的定义域.

(4)若已知f(x)满足某个等式,这个等式除f(x)是未知量外,还出现其他未知量(如f(-x),等),必须根据已知等式,再构造其他等式组成方程组,利用解方程组法求出f(x)的表达式.

【(三)、函数的值域与最值】

1、函数的值域取决于定义域和对应法则,不论采用何种方法求函数值域都应先考虑其定义域,求函数值域常用方法如下:

(1)直接法:亦称观察法,对于结构较为简单的函数,可由函数的解析式应用不等式的性质,直接观察得出函数的值域.

(2)换元法:运用代数式或三角换元将所给的复杂函数转化成另一种简单函数再求值域,若函数解析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元.

(3)反函数法:利用函数f(x)与其反函数f-1(x)的定义域和值域间的关系,通过求反函数的定义域而得到原函数的值域,形如(a≠0)的函数值域可采用此法求得.

(4)配方法:对于二次函数或二次函数有关的函数的值域问题可考虑用配方法.

(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函数的值域,不过应注意条件“一正二定三相等”有时需用到平方等技巧.

(6)判别式法:把y=f(x)变形为关于x的一元二次方程,利用“△≥0”求值域.其题型特征是解析式中含有根式或分式.

(7)利用函数的单调性求值域:当能确定函数在其定义域上(或某个定义域的子集上)的单调性,可采用单调性法求出函数的值域.

(8)数形结合法求函数的值域:利用函数所表示的几何意义,借助于几何方法或图象,求出函数的值域,即以数形结合求函数的值域.

2、求函数的最值与值域的区别和联系

求函数最值的常用方法和求函数值域的方法基本上是相同的,事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同,因而答题的方式就有所相异.

如函数的值域是(0,16],值是16,无最小值.再如函数的值域是(-∞,-2]∪[2,+∞),但此函数无值和最小值,只有在改变函数定义域后,如x>0时,函数的最小值为2.可见定义域对函数的值域或最值的影响.

3、函数的最值在实际问题中的应用

函数的最值的应用主要体现在用函数知识求解实际问题上,从文字表述上常常表现为“工程造价最低”,“利润”或“面积(体积)(最小)”等诸多现实问题上,求解时要特别关注实际意义对自变量的制约,以便能正确求得最值.

【(四)、函数的奇偶性】

1、函数的奇偶性的定义:对于函数f(x),如果对于函数定义域内的任意一个x,都有f(-x)=-f(x)(或f(-x)=f(x)),那么函数f(x)就叫做奇函数(或偶函数).

正确理解奇函数和偶函数的定义,要注意两点:(1)定义域在数轴上关于原点对称是函数f(x)为奇函数或偶函数的必要不充分条件;(2)f(x)=-f(x)或f(-x)=f(x)是定义域上的恒等式.(奇偶性是函数定义域上的整体性质).

2、奇偶函数的定义是判断函数奇偶性的主要依据。为了便于判断函数的奇偶性,有时需要将函数化简或应用定义的等价形式:

注意如下结论的运用:

(1)不论f(x)是奇函数还是偶函数,f(|x|)总是偶函数;

(2)f(x)、g(x)分别是定义域D1、D2上的奇函数,那么在D1∩D2上,f(x)+g(x)是奇函数,f(x)・g(x)是偶函数,类似地有“奇±奇=奇”“奇×奇=偶”,“偶±偶=偶”“偶×偶=偶”“奇×偶=奇”;

(3)奇偶函数的复合函数的奇偶性通常是偶函数;

(4)奇函数的导函数是偶函数,偶函数的导函数是奇函数。

3、有关奇偶性的几个性质及结论

(1)一个函数为奇函数的充要条件是它的图象关于原点对称;一个函数为偶函数的充要条件是它的图象关于y轴对称.

(2)如要函数的定义域关于原点对称且函数值恒为零,那么它既是奇函数又是偶函数.

(3)若奇函数f(x)在x=0处有意义,则f(0)=0成立.

(4)若f(x)是具有奇偶性的区间单调函数,则奇(偶)函数在正负对称区间上的单调性是相同(反)的。

(5)若f(x)的定义域关于原点对称,则F(x)=f(x)+f(-x)是偶函数,G(x)=f(x)-f(-x)是奇函数.

(6)奇偶性的推广

函数y=f(x)对定义域内的任一x都有f(a+x)=f(a-x),则y=f(x)的图象关于直线x=a对称,即y=f(a+x)为偶函数.函数y=f(x)对定义域内的任-x都有f(a+x)=-f(a-x),则y=f(x)的图象关于点(a,0)成中心对称图形,即y=f(a+x)为奇函数。

【(五)、函数的单调性】

1、单调函数

对于函数f(x)定义在某区间[a,b]上任意两点x1,x2,当x1>x2时,都有不等式f(x1)>(或

对于函数单调性的定义的理解,要注意以下三点:

(1)单调性是与“区间”紧密相关的概念.一个函数在不同的区间上可以有不同的单调性.

(2)单调性是函数在某一区间上的“整体”性质,因此定义中的x1,x2具有任意性,不能用特殊值代替.

(3)单调区间是定义域的子集,讨论单调性必须在定义域范围内.

(4)注意定义的两种等价形式:

设x1、x2∈[a,b],那么:

①在[a、b]上是增函数;

在[a、b]上是减函数.

②在[a、b]上是增函数.

在[a、b]上是减函数.

需要指出的是:①的几何意义是:增(减)函数图象上任意两点(x1,f(x1))、(x2,f(x2))连线的斜率都大于(或小于)零.

(5)由于定义都是充要性命题,因此由f(x)是增(减)函数,且(或x1>x2),这说明单调性使得自变量间的不等关系和函数值之间的不等关系可以“正逆互推”.

5、复合函数y=f[g(x)]的单调性

若u=g(x)在区间[a,b]上的单调性,与y=f(u)在[g(a),g(b)](或g(b),g(a))上的单调性相同,则复合函数y=f[g(x)]在[a,b]上单调递增;否则,单调递减.简称“同增、异减”.

在研究函数的单调性时,常需要先将函数化简,转化为讨论一些熟知函数的单调性。因此,掌握并熟记一次函数、二次函数、指数函数、对数函数的单调性,将大大缩短我们的判断过程.

6、证明函数的单调性的方法

(1)依定义进行证明.其步骤为:①任取x1、x2∈M且x1(或

(2)设函数y=f(x)在某区间内可导.

如果f′(x)>0,则f(x)为增函数;如果f′(x)

【(六)、函数的图象】

函数的图象是函数的直观体现,应加强对作图、识图、用图能力的培养,培养用数形结合的思想方法解决问题的意识.

求作图象的函数表达式

与f(x)的关系

由f(x)的图象需经过的变换

y=f(x)±b(b>0)

沿y轴向平移b个单位

y=f(x±a)(a>0)

沿x轴向平移a个单位

y=-f(x)

作关于x轴的对称图形

y=f(|x|)

右不动、左右关于y轴对称

y=|f(x)|

上不动、下沿x轴翻折

y=f-1(x)

作关于直线y=x的对称图形

y=f(ax)(a>0)

横坐标缩短到原来的,纵坐标不变

y=af(x)

纵坐标伸长到原来的|a|倍,横坐标不变

y=f(-x)

作关于y轴对称的图形

【例】定义在实数集上的函数f(x),对任意x,y∈R,有f(x+y)+f(x-y)=2f(x)・f(y),且f(0)≠0.

①求证:f(0)=1;

②求证:y=f(x)是偶函数;

③若存在常数c,使求证对任意x∈R,有f(x+c)=-f(x)成立;试问函数f(x)是不是周期函数,如果是,找出它的一个周期;如果不是,请说明理由.

思路分析:我们把没有给出解析式的函数称之为抽象函数,解决这类问题一般采用赋值法.

解答:①令x=y=0,则有2f(0)=2f2(0),因为f(0)≠0,所以f(0)=1.

②令x=0,则有f(x)+f(-y)=2f(0)・f(y)=2f(y),所以f(-y)=f(y),这说明f(x)为偶函数.

③分别用(c>0)替换x、y,有f(x+c)+f(x)=

所以,所以f(x+c)=-f(x).

两边应用中的结论,得f(x+2c)=-f(x+c)=-[-f(x)]=f(x),

所以f(x)是周期函数,2c就是它的一个周期.

第四篇:高一数学知识点总结

集合的运算

运算类型交 集并 集补 集

定义域 R定义域 R

值域>0值域>0

在R上单调递增在R上单调递减

非奇非偶函数非奇非偶函数

函数图象都过定点(0,1)函数图象都过定点(0,1)

注意:利用函数的单调性,结合图象还可以看出:

(1)在[a,b]上, 值域是 或 ;

(2)若 ,则 ; 取遍所有正数当且仅当 ;

(3)对于指数函数 ,总有 ;

二、对数函数

(一)对数

1.对数的概念:

一般地,如果 ,那么数 叫做以 为底 的对数,记作: ( ― 底数, ― 真数, ― 对数式)

说明:○1 注意底数的限制 ,且 ;

○2 ;

○3 注意对数的书写格式.

两个重要对数:

○1 常用对数:以10为底的对数 ;

○2 自然对数:以无理数 为底的对数的对数 .

指数式与对数式的互化

幂值 真数

= N = b

底数

指数 对数

(二)对数的运算性质

如果 ,且 , , ,那么:

○1 + ;

○2 - ;

○3 .

注意:换底公式: ( ,且 ; ,且 ; ).

利用换底公式推导下面的结论:(1) ;(2) .

(3)、重要的公式 ①、负数与零没有对数; ②、 , ③、对数恒等式

(二)对数函数

1、对数函数的概念:函数 ,且 叫做对数函数,其中 是自变量,函数的定义域是(0,+∞).

注意:○1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。如: , 都不是对数函数,而只能称其为对数型函数.

○2 对数函数对底数的限制: ,且 .

2、对数函数的性质:

a>10

定义域x>0定义域x>0

值域为R值域为R

在R上递增在R上递减

函数图象都过定点(1,0)函数图象都过定点(1,0)

(三)幂函数

1、幂函数定义:一般地,形如 的函数称为幂函数,其中 为常数.

2、幂函数性质归纳.

(1)所有的幂函数在(0,+∞)都有定义并且图象都过点(1,1);

(2) 时,幂函数的图象通过原点,并且在区间 上是增函数.特别地,当 时,幂函数的图象下凸;当 时,幂函数的图象上凸;

(3) 时,幂函数的图象在区间 上是减函数.在第一象限内,当 从右边趋向原点时,图象在 轴右方无限地逼近 轴正半轴,当 趋于 时,图象在 轴上方无限地逼近 轴正半轴.

第四章 函数的应用

一、方程的根与函数的零点

1、函数零点的概念:对于函数 ,把使 成立的实数 叫做函数 的零点。

2、函数零点的意义:函数 的零点就是方程 实数根,亦即函数 的图象与 轴交点的横坐标。

即:方程 有实数根 函数 的图象与 轴有交点 函数 有零点.

3、函数零点的求法:

○1 (代数法)求方程 的实数根;

○2 (几何法)对于不能用求根公式的方程,可以将它与函数 的图象联系起来,并利用函数的性质找出零点.

4、二次函数的零点:

二次函数 .

(1)△>0,方程 有两不等实根,二次函数的图象与 轴有两个交点,二次函数有两个零点.

(2)△=0,方程 有两相等实根,二次函数的图象与 轴有一个交点,二次函数有一个二重零点或二阶零点.

(3)△<0,方程 无实根,二次函数的图象与 轴无交点,二次函数无零点.

5.函数的模型

第五篇:初中数学几何图形综合题

初中数学几何图形综合题

必胜中学 2018-01-30 15:15:15

题型专项 几何图形综合题

【题型特征】 以几何知识为主体的综合题,简称几何综合题,主要研究图形中点与线之间的位置关系、数量关系,以及特定图形的判定和性质.一般以相似为中心,以圆为重点,常常是圆与三角形、四边形、相似三角形、锐角三角函数等知识的综合运用. 【解题策略】 解答几何综合题应注意:(1)注意观察、分析图形,把复杂的图形分解成几个基本图形,通过添加辅助线补全或构造基本图形.(2)掌握常规的证题方法和思路;(3)运用转化的思想解决几何证明问题,运用方程的思想解决几何计算问题.还要灵活运用其他的数学思想方法等. 【小结】 几何计算型综合问题,是以计算为主线综合各种几何知识的问题.这类问题的主要特点是包含知识点多、覆盖面广、逻辑关系复杂、解法灵活.解题时必须在充分利用几何图形的性质及题设的基础上挖掘几何图形中隐含的数量关系和位置关系,在复杂的“背景”下辨认、分解基本图形,或通过添加辅助线补全或构造基本图形,并善于联想所学知识,突破思维障碍,合理运用方程等各种数学思想才能解决. 【提醒】 几何论证型综合题以知识上的综合性引人注目.值得一提的是,在近年各地的中考试题中,几何论证型综合题的难度普遍下降,出现了一大批探索性试题,根据新课标的要求,减少几何中推理论证的难度,加强探索性训练,将成为几何论证型综合题命题的新趋势. 为了复习方便,我们将几何综合题分为:以三角形为背景的综合题;以四边形为背景的综合题;以圆为背景的综合题.

类型1 操作探究题

1.在Rt△ABC中,∠C=90°,Rt△ABC绕点A顺时针旋转到Rt△ADE的位置,点E在斜边AB上,连接BD,过点D作DF⊥AC于点F.

(1)如图1,若点F与点A重合,求证:AC=BC; (2)若∠DAF=∠DBA. ①如图2,当点F在线段CA的延长线上时,判断线段AF与线段BE的数量关系,并说明理由;

②当点F在线段CA上时,设BE=x,请用含x的代数式表示线段AF. 解:(1)证明:由旋转得,∠BAC=∠BAD, ∵DF⊥AC, ∴∠CAD=90°. ∴∠BAC=∠BAD=45°. ∵∠ACB=90°, ∴∠ABC=45°. ∴AC=BC. (2)①AF=BE.理由:

由旋转得AD=AB,∴∠ABD=∠ADB. ∵∠DAF=∠ABD,∴∠DAF=∠ADB. ∴AF∥BD.∴∠BAC=∠ABD. ∵∠ABD=∠FAD,由旋转得∠BAC=∠BAD. ∴∠FAD=∠BAC=∠BAD=1/3×180°=60°. 由旋转得,AB=AD.∴△ABD是等边三角形.∴AD=BD. 在△AFD和△BED中:1.∠F=.∠BED=90°;2.AD=BD;∴△AFD≌△BED(AAS).∴AF=BE. ②如图

3.∠FAD=∠EBD,

由旋转得∠BAC=∠BAD. ∵∠ABD=∠FAD=∠BAC+∠BAD=2∠BAD, 由旋转得AD=AB,

∴∠ABD=∠ADB=2∠BAD. ∵∠BAD+∠ABD+∠ADB=180°,

∴∠BAD+2∠BAD+2∠BAD=180°.∴∠BAD=36°. 设BD=a,作BG平分∠ABD,

∴∠BAD=∠GBD=36°.∴AG=BG=BD=a. ∴DG=AD-AG=AD-BG=AD-BD. ∵∠BDG=∠ADB,∴△BDG∽△ADB. ∴BD/AD=DG/DB.∴BD/AD=(AD-BD)/BD∴AD/BD=(1+根号5)/2。 ∵∠FAD=∠EBD,∠AFD=∠BED,∴△AFD∽△BED. ∴BD/AD=BE/AF.∴AF=BD/AD·BE=(1+根号5)/2*x. 2.如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG,OE为邻边作正方形OEFG,连接AG,DE.

(1)求证:DE⊥AG;

(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2. ①在旋转过程中,当∠OAG′是直角时,求α的度数;

②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由. 解:(1)证明:延长ED交AG于点H, ∵点O是正方形ABCD两对角线的交点, ∴OA=OD,OA⊥OD. 在△AOG和△DOE中,1.OA=OD;2.∠AOG=∠DOE=90°;3.OG=OE ∴△AOG≌△DOE.∴∠AGO=∠DEO. ∵∠AGO+∠GAO=90°,∴∠GAO+∠DEO=90°. ∴∠AHE=90°,即DE⊥AG. (2)①在旋转过程中,∠OAG′成为直角有两种情况: (Ⅰ)α由0°增大到90°过程中,当∠OAG′=90°时, ∵OA=OD=1/2*OG=1/2*OG′,

∴在Rt△OAG′中,sin∠AG′O=OA/OG′=1/2 ∴∠AG′O=30°. ∵OA⊥OD,OA⊥AG′,∴OD∥AG′. ∴∠DOG′=∠AG′O=30°,即α=30°. (Ⅱ)α由90°增大到180°过程中,当∠OAG′=90°时, 同理可求∠BOG′=30°,∴α=180°-30°=150°. 综上所述,当∠OAG′=90°时,α=30°或150°. ②AF′的最大值为2分子根号2+2,此时α=315°. 提示:如图

当旋转到A,O,F′在一条直线上时,AF′的长最大, ∵正方形ABCD的边长为1, ∴OA=OD=OC=OB=2分子根号2. ∵OG=2OD,∴OG′=OG=.∴OF′=2. ∴AF′=AO+OF′=2分子根号2+2.∵∠COE′=45°,∴此时α=315°. 3.如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM沿直线AM对折,得到△ANM. (1)当AN平分∠MAB时,求DM的长; (2)连接BN,当DM=1时,求△ABN的面积; (3)当射线BN交线段CD于点F时,求DF的最大值.

解:(1)由折叠可知△ANM≌△ADM, ∴∠MAN=∠DAM. ∵AN平分∠MAB, ∴∠MAN=∠NAB. ∴∠DAM=∠MAN=∠NAB. ∵四边形ABCD是矩形, ∴∠DAB=90°.∴∠DAM=30°. ∴DM=AD·tan∠DAM=3×3分子根号3=根号3。 (2)如图1,延长MN交AB延长线于点Q. ∵四边形ABCD是矩形,∴AB∥DC. ∴∠DMA=∠MAQ. 由折叠可知△ANM≌△ADM,

∴∠DMA=∠AMQ,AN=AD=3,MN=MD=1. ∴∠MAQ=∠AMQ. ∴MQ=AQ. 设NQ=x,则AQ=MQ=1+x. 在Rt△ANQ中,AQ2=AN平方+NQ平方, ∴(x+1)平方=3的平方+x的平方.解得x=4. ∴NQ=4,AQ=5. ∵AB=4,AQ=5,

∴SΔNAB=4/5*S,ΔNAQ=4/5·1/2·AN·NQ=24/5. (3)如图2,过点A作AH⊥BF于点H,则△ABH∽△BFC,∴BH/AH=CF/BC. ∵AH≤AN=3,AB=4,

∴当点N,H重合(即AH=AN)时,DF最大.(AH最大,BH最小,CF最小,DF最大) 此时M,F重合,B,N,M三点共线,△ABH≌△BFC(如图3),

∴DF的最大值为4-根号7

图1

类型2 动态探究题

4.(2016·自贡)已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.

(1)如图1,已知折痕与边BC交于点O,连接AP,OP,OA.若△OCP与△PDA的面积比为1∶4,求边CD的长;

(2)如图2,在(1)的条件下,擦去折痕AO,线段OP,连接BP.动点M在线段AP上(点M与点P,A不重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP于点E.试问当动点M,N在移动的过程中,线段EF的长度是否发生变化?若变化,说明变化规律.若不变,求出线段EF的长度.

解:(1)∵四边形ABCD是矩形,∴∠C=∠D=90°. ∴∠APD+∠DAP=90°. ∵由折叠可得∠APO=∠B=90°,

∴∠APD+∠CPO=90°.∴∠CPO=∠DAP. 又∵∠D=∠C,∴△OCP∽△PDA.∵△OCP与△PDA的面积比为1∶4,

设OP=x,则CO=8-x.在Rt△PCO中,∠C=90°, 由勾股定理得

,解得x=5.∴AB=AP=2OP=10.∴CD=10. (2)过点M作MQ∥AN,交PB于点Q. ∵AP=AB,MQ∥AN, ∴∠APB=∠ABP=∠MQP. ∴MP=MQ.∵BN=PM,∴BN=QM.∵MP=MQ,ME⊥PQ,∴EQ=0.5PQ. ∵MQ∥AN,∴∠QMF=∠BNF. 在△MFQ和△NFB中,1.∠QFM=∠NFB;2.∠QMF=∠BNF;3.MQ=BN ∴△MFQ≌△NFB(AAS).∴QF=BF=0.5QB. ∴EF=EQ+QF=0.5PQ+0.5QB=0.5PB.由(1)中的结论可得PC=4,BC=8,∠C=90°,

∴在(1)的条件下,当点M,N在移动过程中,线段EF的长度不变,它的长度为2*根号5. 5.如图,在直角坐标系xOy中,矩形OABC的顶点A,C分别在x轴和y轴正半轴上,点B的坐标是(5,2),点P是CB边上一动点(不与点C,B重合),连接OP,AP,过点O作射线OE交AP的延长线于点E,交CB边于点M,且∠AOP=∠COM,令CP=x,MP=y. (1)当x为何值时,OP⊥AP? (2)求y与x的函数关系式,并写出x的取值范围;

(3)在点P的运动过程中,是否存在x,使△OCM的面积与△ABP的面积之和等于△EMP的面积.若存在,请求x的值;若不存在,请说明理由.

解:(1)由题意知OA=BC=5,AB=OC=2,∠B=∠OCM=90°,BC∥OA. ∵OP⊥AP,

∴∠OPC+∠APB=∠APB+∠PAB=90°. ∴∠OPC=∠PAB. ∴△OPC∽△PAB.

解得x1=4,x2=1(不合题意,舍去). ∴当x=4时,OP⊥AP. (2)∵BC∥OA,∴∠CPO=∠AOP. ∵∠AOP=∠COM,∴∠COM=∠CPO. ∵∠OCM=∠PCO,∴△OCM∽△PCO.

∴y=x-4/x(2

(3)存在x符合题意.过点E作ED⊥OA于点D,交MP于点F,则DF=AB=2. ∵△OCM与△ABP面积之和等于△EMP的面积, ∴S△EOA=S矩形OABC=2×5=1/2·5ED. ∴ED=4,EF=2. ∵PM∥OA,∴△EMP∽△EOA.

解得y=5/2.

6.如图1,矩形ABCD的两条边在坐标轴上,点D与坐标原点O重合,且AD=8,AB=6.如图2,矩形ABCD沿O B方向以每秒1个单位长度的速度运动,同时点P从A点出发也以每秒1个单位长度的速度沿矩形ABCD的边AB经过点B向点C运动,当点P到达点C时,矩形ABCD和点P同时停止运动,设点P的运动时间为t秒.

(1)当t=5时,请直接写出点D,点P的坐标;

(2)当点P在线段AB或线段BC上运动时,求出△PBD的面积S关于t的函数关系式,并写出相应t的取值范围; (3)点P在线段AB或线段BC上运动时,作

PE⊥x轴,垂足为点E,当△PEO与△BCD相似时,求出相应的t值. 解:(1)D(-4,3),P(-12,8). (2)当点P在边AB上时,BP=6-t. ∴S=0.5BP·AD=0.5(6-t)·8=-4t+24. 当点P在边BC上时,BP=t-6. ∴S=0.5BP·AB=0.5(t-6)·6=3t-18.

类型3 类比探究题

7.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于点F. (1)求证:PC=PE; (2)求∠CPE的度数;

(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.

解:(1)证明:在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°, 在△ABP和△CBP中,1.AB=BC;2.PB=PB;3.∠ABP=∠CBP ∴△ABP≌△CBP(SAS).∴PA=PC. 又∵PA=PE,∴PC=PE. (2)由(1)知,△ABP≌△CBP, ∴∠BAP=∠BCP.∴∠DAP=∠DCP. ∵PA=PE,∴∠DAP=∠E. ∴∠DCP=∠E. ∵∠CFP=∠EFD(对顶角相等),

∴180°-∠PFC-∠PCF=180°-∠DFE-∠E, 即∠CPF=∠EDF=90°. (3)在菱形ABCD中,AB=BC,∠ABP=∠CBP=60°, 在△ABP和△CBP中,1.AB=BC;2.PB=PB;3.∠ABP=∠CBP ∴△ABP≌△CBP(SAS). ∴PA=PC,∠BAP=∠BCP. ∵PA=PE,∴PC=PE.∴∠DAP=∠DCP. ∵PA=PE,∴∠DAP=∠AEP. ∴∠DCP=∠AEP. ∵∠CFP=∠EFD(对顶角相等),

∴180°-∠PFC-∠PCF=180°-∠DFE-∠AEP, 即∠CPF=∠EDF=180°-∠ADC=180°-120°=60°. ∴△EPC是等边三角形.∴PC=CE. ∴AP=CE. 8.已知AC,EC分别为四边形ABCD和EFCG的对角线,点E在△ABC内,∠CAE+∠CBE=90°. (1)如图1,当四边形ABCD和EFCG均为正方形时,连接BF. ①求证:△CAE∽△CBF; ②若BE=1,AE=2,求CE的长;

(2)如图2,当四边形ABCD和EFCG均为矩形,且AB/BC=EF/FC=k时,若BE=1,AE=2,CE=3,求k的值;

(3)如图3,当四边形ABCD和EFCG均为菱形,且∠DAB=∠GEF=45°时,设BE=m,AE=n,CE=p,试探究m,n,p三者之间满足的等量关系.(直接写出结果,不必写出解答过程)

解:(1)证明:①∵四边形ABCD和EFCG均为正方形, ∴∠ACB=45°,∠ECF=45°. ∴∠ACB-∠ECB=∠ECF-∠ECB, 即∠ACE=∠BCF.

∴△CAE∽△CBF. ②∵△CAE∽△CBF,∴∠CAE=∠CBF,AE/BF=根号2. ∴BF=根号2. 又∠CAE+∠CBE=90°, ∴∠CBF+∠CBE=90°,即∠EBF=90°.

解得CE=根号6. (2)连接BF,

∵AB/BC=EF/FC=k,∠CFE=∠CBA, ∴△CFE∽△CBA. ∴∠ECF=∠ACB,CE/CF=AC/BC. ∴∠ACE=∠BCF.∴△ACE∽△BCF.∴∠CAE=∠CBF. ∵∠CAE+∠CBE=90°,∴∠CBF+∠CBE=90°,

题型2 与圆有关的几何综合题

9.(2016·成都)如图,在Rt△ABC中,∠ABC=90°,以CB为半径作⊙C,交AC于点D,交AC的延长线于点E,连接ED,BE. (1)求证:△ABD∽△AEB; (2)当BC(AB)=3(4)时,求tanE;

(3)在(2)的条件下,作∠BAC的平分线,与BE交于点F,若AF=2,求⊙C的半径.

解:(1)证明:∵∠ABC=90°,∴∠ABD=90°-∠DBC. ∵DE是直径, ∴∠DBE=90°. ∴∠E=90°-∠BDE. ∵BC=CD,∴∠DBC=∠BDE. ∴∠ABD=∠E. ∵∠BAD=∠DAB,∴△ABD∽△AEB.

10.如图,在Rt△ABC中,∠ABC=90°,AC的垂直平分线分别与AC,BC及AB的延长线相交于点D,E,F.⊙O是△BEF的外接圆,∠EBF的平分线交EF于点G,交⊙O于点H,连接BD,FH. (1)试判断BD与⊙O的位置关系,并说明理由; (2)当AB=BE=1时,求⊙O的面积; (3)在(2)的条件下,求HG·HB的值.

解:(1)直线BD与⊙O 相切.理由:连接OB. ∵BD是Rt△ABC斜边上的中线,∴DB=DC. ∴∠DBC=∠C. ∵OB=OE, ∴∠OBE=∠OEB. 又∵∠OEB=∠CED,∴∠OBE=∠CED. ∵DF⊥AC,∴∠CDE=90°. ∴∠C+∠CED=90°. ∴∠DBC+∠OBE=90°. ∴BD与⊙O相切. (2)连接AE. 在Rt△ABE中,AB=BE=1,∴AE=根号2. ∵DF垂直平分AC,∴CE=AE=根号2.∴BC=1+根号2. ∵∠C+∠CAB=90°,∠DFA+∠CAB=90°,∴∠ACB=∠DFA. 又∠CBA=∠FBE=90°,A B=BE,∴△CAB≌△FEB.

(3)∵AB=BE,∠ABE=90°, ∴∠AEB=45°. ∵EA=EC,∴∠C=22.5°. ∴∠H=∠BEG=∠CED=90°-22.5°=67.5°. ∵BH平分∠CBF, ∴∠EBG=∠HBF=45°. ∴∠BGE=∠BFH=67.5°.

11.如图,在△ACE中,CA=CE,∠CAE=30°,⊙O经过点C,且圆的直径AB在线段AE上.

(1)试说明CE是⊙O的切线;

(2)若△ACE中AE边上的高为h,试用含h的代数式表示⊙O的直径AB; (3)设点D是线段AC上任意一点(不含端点

),连接OD,当1/2CD+OD的最小值为6时,求⊙O的直径AB的长.

解:(1)证明:连接OC. ∵CA=CE,∠CAE=30°,

∴∠E=∠CAE=30°,∠COE=2∠A=60°. ∴∠OCE=90°. ∴CE是⊙O的切线.

12.如图,已知AB是⊙O的直径,BP是⊙O的弦,弦CD⊥AB于点F,交BP于点G,E在CD的反向延长线上,EP=EG, (1)求证:直线EP为⊙O的切线;

(2)点P在劣弧AC上运动,其他条件不变,若BG2=BF·BO.试证明BG=PG; (3)在满足(2)的条件下,已知⊙O的半径为3,sinB=根号3/3.求弦CD的长.

解:(1)证明:连接OP. ∵EP=EG,

∴∠EGP=∠EGP.又∵∠EGP=∠BGF, ∴∠EPG=∠BGF.∵OP=OB,

∴∠OPB=∠OBP.∵CD⊥AB,∴∠BGF+∠OBP=90°. ∴∠EPG+∠OPB=90°,即∠EPO=90°.∴直线EP为⊙O的切线. (2)证明:连接OG,AP.∵BG2=BF·BO,∴BG/BO=BF/BG 又∵∠GBF=∠OBG,∴△BFG∽△BGO. ∴∠BGF=∠BOG,∠BGO=∠BFG=90°. ∵∠APB=∠OGB=90°,∴OG∥AP.又∵AO=BO,∴BG=PG.

13.如图,在△AOB中,∠AOB为直角,OA=6,OB=8,半径为2的动圆圆心Q从点O出发,沿着OA方向以1个单位长度/秒的速度匀速运动,同时动点P从点A出发,沿着AB方向也以1个单位长度/秒的速度匀速运动,设运动时间为t秒(0<t≤5)以P为圆心,PA长为半径的⊙P与AB,OA的交点分别为C,D,连接CD,QC. (1)当t为何值时,点Q与点D重合?

(2)当⊙Q经过点A时,求⊙P被OB截得的弦长; (3)若⊙P与线段QC只有一个公共点,求t的取值范围.

第六篇:高一数学知识点总结

圆的方程定义:

圆的标准方程(x―a)2+(y―b)2=r2中,有三个参数a、b、r,即圆心坐标为(a,b),只要求出a、b、r,这时圆的方程就被确定,因此确定圆方程,须三个独立条件,其中圆心坐标是圆的定位条件,半径是圆的定形条件。

直线和圆的位置关系:

1、直线和圆位置关系的判定方法一是方程的观点,即把圆的方程和直线的方程联立成方程组,利用判别式Δ来讨论位置关系。

①Δ>0,直线和圆相交、②Δ=0,直线和圆相切、③Δ

方法二是几何的观点,即把圆心到直线的距离d和半径R的大小加以比较。

①dR,直线和圆相离、

2、直线和圆相切,这类问题主要是求圆的切线方程、求圆的切线方程主要可分为已知斜率k或已知直线上一点两种情况,而已知直线上一点又可分为已知圆上一点和圆外一点两种情况。

3、直线和圆相交,这类问题主要是求弦长以及弦的中点问题。

切线的性质

⑴圆心到切线的距离等于圆的半径;

⑵过切点的半径垂直于切线;

⑶经过圆心,与切线垂直的直线必经过切点;

⑷经过切点,与切线垂直的直线必经过圆心;

当一条直线满足

(1)过圆心;

(2)过切点;

(3)垂直于切线三个性质中的两个时,第三个性质也满足。

切线的判定定理

经过半径的外端点并且垂直于这条半径的直线是圆的切线。

切线长定理

从圆外一点作圆的两条切线,两切线长相等,圆心与这一点的连线平分两条切线的夹角。

《初中数学几何图形综合题(合集).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档