无忧范文网小编为你整理了多篇《建排毕业设计开题报告范文》范文,希望对您的工作学习有帮助,你还可以在无忧范文网可以找到更多《建排毕业设计开题报告范文》。
一、 选题的目的和意义
现在讲一些很专业的名词,这些都是我们已经学过的知识要点。QSAR 是通过对已知结构且有生物活性系列化合物(如一系列有相同药理作用的结构相似的化合物)进行化学信息学的计算, 选用适当的数学模型建立活性与化合物结构之间定量关系,解释由于分子结构的变化影响化合物生物活性的改变,推测其可能的作用机理。然后建立有效的QSAR模型,如果有新化合物的出现,且其结构数据已知,可以预测其生物活性,也可以优化结构改变现有化合物的结构以提高其生物活性。这种方法广泛应用于药物、农药、化学毒剂等生物活性分子的合理设计。在经历40多年的发展过程中,定量构效活性关系在国际上已成为一个相当活跃的研究领域。
长期以来,肿瘤一直严重威胁着人类的健康与生命。全世界的科学家在过去的几十年中付出了巨大努力,从多个角度来研究肿瘤的致病机制,采用各种手段来进行预防、诊断与治疗,但肿瘤的发病率与致死率仍然居高不下。WHO文件显示:抗肿瘤药物有“细胞毒”和促进分化等作用,可以杀死肿瘤细胞、抑制肿瘤细胞的生长繁殖和促进肿瘤细胞的分化等,从而可以治疗或治愈肿瘤,而且由于其相对低廉的费用,被大多数肿瘤患者所接受。
尽管肿瘤的化学治疗已取得重大进展,新的抗肿瘤药物不断出现,但肿瘤的化学治疗仍存在着许多问题,这主要是因为实体肿瘤占恶性肿瘤的90%但多数实体瘤如肺癌、肝癌、结肠癌及胰腺癌等还缺乏有效的药物;现有的抗肿瘤药物毒副反应太大,缺乏选择性;肿瘤细胞对抗肿瘤药物产生抗药性[1]。
QSAR主要侧重于药物早期的研究和发展,为新药物分子的筛选的和设计开拓了新的途径[2],在受体结构已知的情况下,对抗肿瘤药物进行定量构效活性关系研究,用生成与受体结构互补的配体的方法来发现可以针对特定肿瘤、特定靶点的非细胞毒类药物,使之更具有选择性和针对性。随着新QSAR模型的建立,极大地缩短了新药合成的时间,降低了开发成本,并能在某种程度上预测药物对特定肿瘤人群的有效性。为肿瘤治疗起到了积极地推动作用。
二、国内外研究现状
肿瘤的化学治疗药物发展很快,每年都有大量抗肿瘤药物研究文献发表,各国对抗肿瘤药物的开发也予以高度重视和大量投资,美国就此专门成立了美国国立癌症研究(National Cancer Institute,简称NCI),成为了世界抗肿瘤的权威机构。
国内研发方向主要以含中草药及其活性成分的抗肿瘤药物,可以归纳为以下几个方面:
(1)对现有药物进行结构改造以改善其药理学特性,如增加水溶性、降低毒副作用等;
(2)以新的作用机理或作用靶点为指导寻找新的活性物质作为先导化合物;
(3)发现新的作用靶点。在当前生物学的后基因时代,科学家们要面对数千个潜在的药物靶点,探讨它们与小分了化合物的相互作用;
(4)加强定量构效活性构关系研究.
近年来随着分子生物学和计算机技术的迅速发展,使得开发新药的技术路线发生了重大变革。国际上越来越多的研究机构在新抗肿瘤药物的开发中使用计算机辅助分子设计,它大大加快了新药设计的速度,节省了创制新药工作的人力和物力,使药物学家能够以理论作指导,有目的地开发新药。计算机辅助分子设计主要分两种情况:一种是在受体结构已知的情况下,采用生成与受体结构互补的配体的方法来寻找新药物;另一种是在受体结构未知的情况下,采用对一组具有类似活性的化合物建立定量结构活性关系,在此模型基础上进行结构修饰来预测生成新的化合物。
QSAR作为抗肿瘤药物设计研究中的一个重要计算方法和常用手段,在新药的开发和研制过程中占据了重要位置。近半个世纪以来,QSAR研究对有机合成化学、药物化学及药物设计的发展起了巨大的推动作用,已经成为研究物质理化性质与生物活性以寻求分子解释的一个强有力工具。下面就定量活性结构活性关系研究的一些常见方法作简要地介绍如下。
1、二维定量结构活性关系方法(2D-QSAR)传统的二维定量结构活性关系方法很多,有Hansch法、基团贡献法和分子连接性指数法等[3] 。
其中最为著名、应用最为广泛的是Hansch 法。 它假设同系列化合某些生物活性的变化是和它们某些可测量的物理化学性质(疏水性、电性质和空间立体性质等)的变化相联系的,并假定这些因子是彼此孤立的,采用多重自由能相关法,借助多重线性回归等统计方法就可以得到定量结构活性关系模型。
基团贡献法是Free-Wilson 在对有机物亚结构信息和生物毒性的相关研究基础上建立的一种方法。这种模式认为有机物与受体间的毒性效应是该有机物特定位置上不同取代基团毒性贡献的加和。Free-Wilson 法仅适用于具有相同母体结构的有机物,常被用来对有机物进行毒性初评。
MCI 能较强地反映分子的立体结构,但反映子电子结构的能力较弱,因此缺乏明确的物理意义,但由于其具有方便、简单且不依赖于实验等优点,近年来得到广泛应用和发展[4~8]。
2、三维定量结构活性关系方法(3D-QSAR)随着结构活性关系理论和统计方法的进一步发展,20 世纪80 年代,三维结构信息被陆续引入到定量结构活性关系研究中, 即3D-QSAR。与2D-QSAR 比较,3D-QSAR 方法在物理化学上的意义更为明确,能间接反映药物分子和靶点之间的非键相互作用特征。因此,近十多年来3D - QSAR 方法得到了迅速的发展和广泛的应用,研究方法也很多[9] ,比如分子形状分(molecular shape analysis ,MSA) ,距离几何方法( distance geometry , DG ,比较分子力场分析(comparative molecular field analysis ,CoMFA) ,比较分子相似因子分析( comparative molecular similarityindices analysi CoMSIA) 以及虚拟受体( phesudo receptor) 等方法。其中应用最为广泛的CoMFA 方法。
3、随着技术的发展和生产技术的进步,又出现了一些先进的方法来构建QSAR模型,都具有很好的预测能力。其中又以启发发(heuristic method,简称HM),支持向量机(Support Vector Machine,简称SVM),基因表达式编程(Gene Expression Programming,简称GEP)比较常见。已成功地应用于分类、函数逼近和时间序列预测等方面[13-15];基因表达式编程(GEP)是基于生物学遗传思想,保持了生物学的特性,具有良好的结果重现性,同时也能够进行“遗传变异”控制,最终能获得可靠的实验效果。
三、主要研究内容
1、查阅中外文文献选取数据来源。
2、理化参数与结构参数的计算。
3、具体的结构参数的分析。
4、SVM与GEP的方法研究。
5、定量结构关系式的建立。
6、定量结构关系式的验证。
7、得出结论和总结。
四、论文工作计划
3月中旬―4月初:选题。
4月初―4月底:查阅资料,熟悉实验原理及方法,准备开题报告。
5月10日: 开题。
5月初日―5月底日:进行毕业设计实验,记录数据,撰写论文。
6月初日―6月中旬日:进行毕业论文答辩。